jamie@141
|
1 /*
|
jamie@141
|
2 * Copyright (C) 2012 Jamie Bullock
|
jamie@140
|
3 *
|
jamie@141
|
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
|
jamie@141
|
5 * of this software and associated documentation files (the "Software"), to
|
jamie@141
|
6 * deal in the Software without restriction, including without limitation the
|
jamie@141
|
7 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
jamie@141
|
8 * sell copies of the Software, and to permit persons to whom the Software is
|
jamie@141
|
9 * furnished to do so, subject to the following conditions:
|
jamie@1
|
10 *
|
jamie@141
|
11 * The above copyright notice and this permission notice shall be included in
|
jamie@141
|
12 * all copies or substantial portions of the Software.
|
jamie@1
|
13 *
|
jamie@141
|
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
jamie@141
|
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
jamie@141
|
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
jamie@141
|
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
jamie@141
|
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
jamie@141
|
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
jamie@141
|
20 * IN THE SOFTWARE.
|
jamie@1
|
21 *
|
jamie@1
|
22 */
|
jamie@1
|
23
|
jamie@1
|
24 /* xtract_vector.c: defines functions that extract a feature as a single value from an input vector */
|
jamie@1
|
25
|
jamie@1
|
26 #include <math.h>
|
jamie@43
|
27 #include <string.h>
|
jamie@43
|
28 #include <stdlib.h>
|
jamie@30
|
29
|
jamie@148
|
30 #include "fft.h"
|
jamie@140
|
31
|
jamie@98
|
32 #include "xtract/libxtract.h"
|
jamie@98
|
33 #include "xtract_macros_private.h"
|
jamie@146
|
34 #include "xtract_globals_private.h"
|
jamie@98
|
35
|
jamie@146
|
36 int xtract_spectrum(const double *data, const int N, const void *argv, double *result)
|
jamie@140
|
37 {
|
jamie@1
|
38
|
jamie@140
|
39 int vector = 0;
|
jamie@140
|
40 int withDC = 0;
|
jamie@140
|
41 int normalise = 0;
|
jamie@146
|
42 double q = 0.0;
|
jamie@146
|
43 double temp = 0.0;
|
jamie@146
|
44 double max = 0.0;
|
jamie@146
|
45 double NxN = XTRACT_SQ(N);
|
jamie@146
|
46 double *marker = NULL;
|
jamie@140
|
47 size_t bytes = N * sizeof(double);
|
jamie@140
|
48 unsigned int n = 0;
|
jamie@140
|
49 unsigned int m = 0;
|
jamie@140
|
50 unsigned int nx2 = 0;
|
jamie@140
|
51 unsigned int M = N >> 1;
|
jamie@98
|
52
|
jamie@146
|
53 q = *(double *)argv;
|
jamie@146
|
54 vector = (int)*((double *)argv+1);
|
jamie@146
|
55 withDC = (int)*((double *)argv+2);
|
jamie@146
|
56 normalise = (int)*((double *)argv+3);
|
jamie@105
|
57
|
jamie@56
|
58 XTRACT_CHECK_q;
|
jamie@46
|
59
|
jamie@140
|
60 if(!ooura_data_spectrum.initialised)
|
jamie@140
|
61 {
|
jamie@140
|
62 fprintf(stderr,
|
jamie@140
|
63 "libxtract: error: xtract_spectrum() failed, "
|
jamie@140
|
64 "fft data unitialised.\n");
|
jamie@98
|
65 return XTRACT_NO_RESULT;
|
jamie@98
|
66 }
|
jamie@98
|
67
|
jamie@140
|
68 /* ooura is in-place
|
jamie@147
|
69 * the output format is
|
jamie@140
|
70 * a[0] - DC, a[1] - nyquist, a[2...N-1] - remaining bins
|
jamie@140
|
71 */
|
jamie@147
|
72 rdft(N, 1, data, ooura_data_spectrum.ooura_ip,
|
jamie@140
|
73 ooura_data_spectrum.ooura_w);
|
jamie@54
|
74
|
jamie@140
|
75 switch(vector)
|
jamie@140
|
76 {
|
jamie@67
|
77
|
jamie@120
|
78 case XTRACT_LOG_MAGNITUDE_SPECTRUM:
|
jamie@140
|
79 for(n = 0, m = 0; m < M; ++n, ++m)
|
jamie@140
|
80 {
|
jamie@140
|
81 if(!withDC && n == 0)
|
jamie@140
|
82 {
|
jamie@140
|
83 continue;
|
jamie@140
|
84 }
|
jamie@140
|
85 nx2 = n * 2;
|
jamie@147
|
86 temp = XTRACT_SQ(data[nx2]) + XTRACT_SQ(data[nx2+1]);
|
jamie@140
|
87 if (temp > XTRACT_LOG_LIMIT)
|
jamie@140
|
88 {
|
jamie@146
|
89 temp = log(sqrt(temp) / (double)N);
|
jamie@140
|
90 }
|
jamie@140
|
91 else
|
jamie@140
|
92 {
|
jamie@140
|
93 temp = XTRACT_LOG_LIMIT_DB;
|
jamie@140
|
94 }
|
jamie@140
|
95 result[m] =
|
jamie@140
|
96 /* Scaling */
|
jamie@140
|
97 (temp + XTRACT_DB_SCALE_OFFSET) /
|
jamie@140
|
98 XTRACT_DB_SCALE_OFFSET;
|
jamie@111
|
99
|
jamie@140
|
100 XTRACT_SET_FREQUENCY;
|
jamie@140
|
101 XTRACT_GET_MAX;
|
jamie@140
|
102 }
|
jamie@140
|
103 break;
|
jamie@67
|
104
|
jamie@140
|
105 case XTRACT_POWER_SPECTRUM:
|
jamie@140
|
106 for(n = 0, m = 0; m < M; ++n, ++m)
|
jamie@140
|
107 {
|
jamie@140
|
108 if(!withDC && n == 0)
|
jamie@140
|
109 {
|
jamie@140
|
110 ++n;
|
jamie@120
|
111 }
|
jamie@147
|
112 result[m] = (XTRACT_SQ(data[n]) + XTRACT_SQ(data[N - n])) / NxN;
|
jamie@140
|
113 XTRACT_SET_FREQUENCY;
|
jamie@140
|
114 XTRACT_GET_MAX;
|
jamie@140
|
115 }
|
jamie@140
|
116 break;
|
jamie@120
|
117
|
jamie@140
|
118 case XTRACT_LOG_POWER_SPECTRUM:
|
jamie@140
|
119 for(n = 0, m = 0; m < M; ++n, ++m)
|
jamie@140
|
120 {
|
jamie@140
|
121 if(!withDC && n == 0)
|
jamie@140
|
122 {
|
jamie@140
|
123 ++n;
|
jamie@120
|
124 }
|
jamie@147
|
125 if ((temp = XTRACT_SQ(data[n]) + XTRACT_SQ(data[N - n])) >
|
jamie@140
|
126 XTRACT_LOG_LIMIT)
|
jamie@146
|
127 temp = log(temp / NxN);
|
jamie@140
|
128 else
|
jamie@140
|
129 temp = XTRACT_LOG_LIMIT_DB;
|
jamie@67
|
130
|
jamie@140
|
131 result[m] = (temp + XTRACT_DB_SCALE_OFFSET) /
|
jamie@140
|
132 XTRACT_DB_SCALE_OFFSET;
|
jamie@140
|
133 XTRACT_SET_FREQUENCY;
|
jamie@140
|
134 XTRACT_GET_MAX;
|
jamie@140
|
135 }
|
jamie@140
|
136 break;
|
jamie@111
|
137
|
jamie@140
|
138 default:
|
jamie@140
|
139 /* MAGNITUDE_SPECTRUM */
|
jamie@140
|
140 for(n = 0, m = 0; m < M; ++n, ++m)
|
jamie@140
|
141 {
|
jamie@140
|
142 marker = &result[m];
|
jamie@140
|
143
|
jamie@140
|
144 if(n==0 && !withDC) /* discard DC and keep Nyquist */
|
jamie@140
|
145 {
|
jamie@140
|
146 ++n;
|
jamie@140
|
147 marker = &result[M-1];
|
jamie@120
|
148 }
|
jamie@140
|
149 if(n==1 && withDC) /* discard Nyquist */
|
jamie@140
|
150 {
|
jamie@140
|
151 ++n;
|
jamie@140
|
152 }
|
jamie@120
|
153
|
jamie@147
|
154 *marker = (double)(sqrt(XTRACT_SQ(data[n*2]) +
|
jamie@147
|
155 XTRACT_SQ(data[n*2+1])) / (double)N);
|
jamie@111
|
156
|
jamie@140
|
157 XTRACT_SET_FREQUENCY;
|
jamie@140
|
158 XTRACT_GET_MAX;
|
jamie@140
|
159
|
jamie@140
|
160 }
|
jamie@140
|
161 break;
|
jamie@70
|
162 }
|
jamie@105
|
163
|
jamie@140
|
164 if(normalise)
|
jamie@140
|
165 {
|
jamie@105
|
166 for(n = 0; n < M; n++)
|
jamie@105
|
167 result[n] /= max;
|
jamie@105
|
168 }
|
jamie@105
|
169
|
jamie@56
|
170 return XTRACT_SUCCESS;
|
jamie@1
|
171 }
|
jamie@1
|
172
|
jamie@146
|
173 int xtract_autocorrelation_fft(const double *data, const int N, const void *argv, double *result)
|
jamie@140
|
174 {
|
jamie@120
|
175
|
jamie@140
|
176 double *rfft = NULL;
|
jamie@140
|
177 int n = 0;
|
jamie@140
|
178 int M = 0;
|
jamie@1
|
179
|
jamie@75
|
180 M = N << 1;
|
jamie@43
|
181
|
jamie@75
|
182 /* Zero pad the input vector */
|
jamie@140
|
183 rfft = (double *)calloc(M, sizeof(double));
|
jamie@146
|
184 memcpy(rfft, data, N * sizeof(double));
|
jamie@75
|
185
|
jamie@140
|
186 rdft(M, 1, rfft, ooura_data_autocorrelation_fft.ooura_ip,
|
jamie@140
|
187 ooura_data_autocorrelation_fft.ooura_w);
|
jamie@1
|
188
|
jamie@140
|
189 for(n = 2; n < M; n++)
|
jamie@140
|
190 {
|
jamie@140
|
191 rfft[n*2] = XTRACT_SQ(rfft[n*2]) + XTRACT_SQ(rfft[n*2+1]);
|
jamie@146
|
192 rfft[n*2+1] = 0.0;
|
jamie@75
|
193 }
|
jamie@120
|
194
|
jamie@140
|
195 rfft[0] = XTRACT_SQ(rfft[0]);
|
jamie@140
|
196 rfft[1] = XTRACT_SQ(rfft[1]);
|
jamie@75
|
197
|
jamie@140
|
198 rdft(M, -1, rfft, ooura_data_autocorrelation_fft.ooura_ip,
|
jamie@140
|
199 ooura_data_autocorrelation_fft.ooura_w);
|
jamie@120
|
200
|
jamie@75
|
201 /* Normalisation factor */
|
jamie@75
|
202 M = M * N;
|
jamie@75
|
203
|
jamie@75
|
204 for(n = 0; n < N; n++)
|
jamie@146
|
205 result[n] = rfft[n] / (double)M;
|
jamie@75
|
206
|
jamie@140
|
207 free(rfft);
|
jamie@38
|
208
|
jamie@56
|
209 return XTRACT_SUCCESS;
|
jamie@1
|
210 }
|
jamie@1
|
211
|
jamie@146
|
212 int xtract_mfcc(const double *data, const int N, const void *argv, double *result)
|
jamie@140
|
213 {
|
jamie@30
|
214
|
jamie@30
|
215 xtract_mel_filter *f;
|
jamie@30
|
216 int n, filter;
|
jamie@30
|
217
|
jamie@30
|
218 f = (xtract_mel_filter *)argv;
|
jamie@120
|
219
|
jamie@140
|
220 for(filter = 0; filter < f->n_filters; filter++)
|
jamie@140
|
221 {
|
jamie@146
|
222 result[filter] = 0.0;
|
jamie@140
|
223 for(n = 0; n < N; n++)
|
jamie@140
|
224 {
|
jamie@71
|
225 result[filter] += data[n] * f->filters[filter][n];
|
jamie@30
|
226 }
|
jamie@146
|
227 result[filter] = log(result[filter] < XTRACT_LOG_LIMIT ? XTRACT_LOG_LIMIT : result[filter]);
|
jamie@30
|
228 }
|
jamie@30
|
229
|
jamie@30
|
230 xtract_dct(result, f->n_filters, NULL, result);
|
jamie@120
|
231
|
jamie@56
|
232 return XTRACT_SUCCESS;
|
jamie@30
|
233 }
|
jamie@30
|
234
|
jamie@146
|
235 int xtract_dct(const double *data, const int N, const void *argv, double *result)
|
jamie@140
|
236 {
|
jamie@120
|
237
|
jamie@148
|
238 int n;
|
jamie@148
|
239 int m;
|
jamie@148
|
240 double *temp = calloc(N, sizeof(double));
|
jamie@120
|
241
|
jamie@148
|
242 for (n = 0; n < N; ++n)
|
jamie@148
|
243 {
|
jamie@148
|
244 for(m = 1; m <= N; ++m) {
|
jamie@148
|
245 temp[n] += data[m - 1] * cos(M_PI * (n / (double)N) * (m - 0.5));
|
jamie@140
|
246 }
|
jamie@148
|
247 }
|
jamie@120
|
248
|
jamie@148
|
249 memcpy(result, temp, N * sizeof(double));
|
jamie@148
|
250 free(temp);
|
jamie@148
|
251
|
jamie@148
|
252 return XTRACT_SUCCESS;
|
jamie@30
|
253 }
|
jamie@30
|
254
|
jamie@146
|
255 int xtract_autocorrelation(const double *data, const int N, const void *argv, double *result)
|
jamie@140
|
256 {
|
jamie@30
|
257
|
jamie@30
|
258 /* Naive time domain implementation */
|
jamie@120
|
259
|
jamie@30
|
260 int n = N, i;
|
jamie@120
|
261
|
jamie@146
|
262 double corr;
|
jamie@30
|
263
|
jamie@140
|
264 while(n--)
|
jamie@140
|
265 {
|
jamie@120
|
266 corr = 0;
|
jamie@140
|
267 for(i = 0; i < N - n; i++)
|
jamie@140
|
268 {
|
jamie@30
|
269 corr += data[i] * data[i + n];
|
jamie@30
|
270 }
|
jamie@30
|
271 result[n] = corr / N;
|
jamie@30
|
272 }
|
jamie@38
|
273
|
jamie@56
|
274 return XTRACT_SUCCESS;
|
jamie@30
|
275 }
|
jamie@30
|
276
|
jamie@146
|
277 int xtract_amdf(const double *data, const int N, const void *argv, double *result)
|
jamie@140
|
278 {
|
jamie@1
|
279
|
jamie@1
|
280 int n = N, i;
|
jamie@120
|
281
|
jamie@146
|
282 double md, temp;
|
jamie@1
|
283
|
jamie@140
|
284 while(n--)
|
jamie@140
|
285 {
|
jamie@146
|
286 md = 0.0;
|
jamie@140
|
287 for(i = 0; i < N - n; i++)
|
jamie@140
|
288 {
|
jamie@6
|
289 temp = data[i] - data[i + n];
|
jamie@120
|
290 temp = (temp < 0 ? -temp : temp);
|
jamie@120
|
291 md += temp;
|
jamie@1
|
292 }
|
jamie@146
|
293 result[n] = md / (double)N;
|
jamie@1
|
294 }
|
jamie@38
|
295
|
jamie@56
|
296 return XTRACT_SUCCESS;
|
jamie@1
|
297 }
|
jamie@1
|
298
|
jamie@146
|
299 int xtract_asdf(const double *data, const int N, const void *argv, double *result)
|
jamie@140
|
300 {
|
jamie@120
|
301
|
jamie@1
|
302 int n = N, i;
|
jamie@120
|
303
|
jamie@146
|
304 double sd;
|
jamie@1
|
305
|
jamie@140
|
306 while(n--)
|
jamie@140
|
307 {
|
jamie@146
|
308 sd = 0.0;
|
jamie@140
|
309 for(i = 0; i < N - n; i++)
|
jamie@140
|
310 {
|
jamie@6
|
311 /*sd = 1;*/
|
jamie@56
|
312 sd += XTRACT_SQ(data[i] - data[i + n]);
|
jamie@1
|
313 }
|
jamie@146
|
314 result[n] = sd / (double)N;
|
jamie@1
|
315 }
|
jamie@38
|
316
|
jamie@56
|
317 return XTRACT_SUCCESS;
|
jamie@1
|
318 }
|
jamie@1
|
319
|
jamie@146
|
320 int xtract_bark_coefficients(const double *data, const int N, const void *argv, double *result)
|
jamie@140
|
321 {
|
jamie@1
|
322
|
jamie@1
|
323 int *limits, band, n;
|
jamie@1
|
324
|
jamie@1
|
325 limits = (int *)argv;
|
jamie@120
|
326
|
jamie@140
|
327 for(band = 0; band < XTRACT_BARK_BANDS - 1; band++)
|
jamie@140
|
328 {
|
jamie@146
|
329 result[band] = 0.0;
|
jamie@1
|
330 for(n = limits[band]; n < limits[band + 1]; n++)
|
jamie@1
|
331 result[band] += data[n];
|
jamie@1
|
332 }
|
jamie@38
|
333
|
jamie@56
|
334 return XTRACT_SUCCESS;
|
jamie@1
|
335 }
|
jamie@1
|
336
|
jamie@146
|
337 int xtract_peak_spectrum(const double *data, const int N, const void *argv, double *result)
|
jamie@140
|
338 {
|
jamie@1
|
339
|
jamie@146
|
340 double threshold, max, y, y2, y3, p, q, *input = NULL;
|
jamie@43
|
341 size_t bytes;
|
jamie@59
|
342 int n = N, rv = XTRACT_SUCCESS;
|
jamie@49
|
343
|
jamie@146
|
344 threshold = max = y = y2 = y3 = p = q = 0.0;
|
jamie@120
|
345
|
jamie@140
|
346 if(argv != NULL)
|
jamie@140
|
347 {
|
jamie@146
|
348 q = ((double *)argv)[0];
|
jamie@146
|
349 threshold = ((double *)argv)[1];
|
jamie@1
|
350 }
|
jamie@49
|
351 else
|
jamie@56
|
352 rv = XTRACT_BAD_ARGV;
|
jamie@49
|
353
|
jamie@140
|
354 if(threshold < 0 || threshold > 100)
|
jamie@140
|
355 {
|
jamie@55
|
356 threshold = 0;
|
jamie@56
|
357 rv = XTRACT_BAD_ARGV;
|
jamie@1
|
358 }
|
jamie@1
|
359
|
jamie@56
|
360 XTRACT_CHECK_q;
|
jamie@49
|
361
|
jamie@146
|
362 input = (double *)calloc(N, sizeof(double));
|
jamie@98
|
363
|
jamie@146
|
364 bytes = N * sizeof(double);
|
jamie@43
|
365
|
jamie@43
|
366 if(input != NULL)
|
jamie@120
|
367 input = memcpy(input, data, bytes);
|
jamie@43
|
368 else
|
jamie@120
|
369 return XTRACT_MALLOC_FAILED;
|
jamie@43
|
370
|
jamie@45
|
371 while(n--)
|
jamie@56
|
372 max = XTRACT_MAX(max, input[n]);
|
jamie@120
|
373
|
jamie@55
|
374 threshold *= .01 * max;
|
jamie@1
|
375
|
jamie@1
|
376 result[0] = 0;
|
jamie@59
|
377 result[N] = 0;
|
jamie@1
|
378
|
jamie@140
|
379 for(n = 1; n < N; n++)
|
jamie@140
|
380 {
|
jamie@140
|
381 if(input[n] >= threshold)
|
jamie@140
|
382 {
|
jamie@140
|
383 if(input[n] > input[n - 1] && n + 1 < N && input[n] > input[n + 1])
|
jamie@140
|
384 {
|
jamie@140
|
385 result[N + n] = q * (n + (p = .5 * ((y = input[n-1]) -
|
jamie@140
|
386 (y3 = input[n+1])) / (input[n - 1] - 2 *
|
jamie@140
|
387 (y2 = input[n]) + input[n + 1])));
|
jamie@52
|
388 result[n] = y2 - .25 * (y - y3) * p;
|
jamie@1
|
389 }
|
jamie@140
|
390 else
|
jamie@140
|
391 {
|
jamie@1
|
392 result[n] = 0;
|
jamie@59
|
393 result[N + n] = 0;
|
jamie@1
|
394 }
|
jamie@1
|
395 }
|
jamie@140
|
396 else
|
jamie@140
|
397 {
|
jamie@1
|
398 result[n] = 0;
|
jamie@59
|
399 result[N + n] = 0;
|
jamie@1
|
400 }
|
jamie@140
|
401 }
|
jamie@120
|
402
|
jamie@43
|
403 free(input);
|
jamie@56
|
404 return (rv ? rv : XTRACT_SUCCESS);
|
jamie@1
|
405 }
|
jamie@120
|
406
|
jamie@146
|
407 int xtract_harmonic_spectrum(const double *data, const int N, const void *argv, double *result)
|
jamie@140
|
408 {
|
jamie@120
|
409
|
jamie@140
|
410 int n = (N >> 1), M = n;
|
jamie@38
|
411
|
jamie@146
|
412 const double *freqs, *amps;
|
jamie@146
|
413 double f0, threshold, ratio, nearest, distance;
|
jamie@38
|
414
|
jamie@52
|
415 amps = data;
|
jamie@52
|
416 freqs = data + n;
|
jamie@146
|
417 f0 = *((double *)argv);
|
jamie@146
|
418 threshold = *((double *)argv+1);
|
jamie@38
|
419
|
jamie@146
|
420 ratio = nearest = distance = 0.0;
|
jamie@38
|
421
|
jamie@140
|
422 while(n--)
|
jamie@140
|
423 {
|
jamie@140
|
424 if(freqs[n])
|
jamie@140
|
425 {
|
jamie@120
|
426 ratio = freqs[n] / f0;
|
jamie@146
|
427 nearest = round(ratio);
|
jamie@120
|
428 distance = fabs(nearest - ratio);
|
jamie@120
|
429 if(distance > threshold)
|
jamie@146
|
430 result[n] = result[M + n] = 0.0;
|
jamie@140
|
431 else
|
jamie@140
|
432 {
|
jamie@120
|
433 result[n] = amps[n];
|
jamie@120
|
434 result[M + n] = freqs[n];
|
jamie@120
|
435 }
|
jamie@120
|
436 }
|
jamie@120
|
437 else
|
jamie@146
|
438 result[n] = result[M + n] = 0.0;
|
jamie@38
|
439 }
|
jamie@56
|
440 return XTRACT_SUCCESS;
|
jamie@38
|
441 }
|
jamie@120
|
442
|
jamie@146
|
443 int xtract_lpc(const double *data, const int N, const void *argv, double *result)
|
jamie@140
|
444 {
|
jamie@104
|
445
|
jamie@104
|
446 int i, j, k, M, L;
|
jamie@146
|
447 double r = 0.0,
|
jamie@146
|
448 error = 0.0;
|
jamie@104
|
449
|
jamie@146
|
450 double *ref = NULL,
|
jamie@140
|
451 *lpc = NULL ;
|
jamie@104
|
452
|
jamie@104
|
453 error = data[0];
|
jamie@104
|
454 k = N; /* The length of *data */
|
jamie@104
|
455 L = N - 1; /* The number of LPC coefficients */
|
jamie@104
|
456 M = L * 2; /* The length of *result */
|
jamie@104
|
457 ref = result;
|
jamie@104
|
458 lpc = result+L;
|
jamie@113
|
459
|
jamie@140
|
460 if(error == 0.0)
|
jamie@140
|
461 {
|
jamie@146
|
462 memset(result, 0, M * sizeof(double));
|
jamie@104
|
463 return XTRACT_NO_RESULT;
|
jamie@104
|
464 }
|
jamie@113
|
465
|
jamie@146
|
466 memset(result, 0, M * sizeof(double));
|
jamie@104
|
467
|
jamie@140
|
468 for (i = 0; i < L; i++)
|
jamie@140
|
469 {
|
jamie@104
|
470
|
jamie@104
|
471 /* Sum up this iteration's reflection coefficient. */
|
jamie@104
|
472 r = -data[i + 1];
|
jamie@140
|
473 for (j = 0; j < i; j++)
|
jamie@104
|
474 r -= lpc[j] * data[i - j];
|
jamie@104
|
475 ref[i] = r /= error;
|
jamie@104
|
476
|
jamie@104
|
477 /* Update LPC coefficients and total error. */
|
jamie@104
|
478 lpc[i] = r;
|
jamie@140
|
479 for (j = 0; j < i / 2; j++)
|
jamie@140
|
480 {
|
jamie@146
|
481 double tmp = lpc[j];
|
jamie@104
|
482 lpc[j] = r * lpc[i - 1 - j];
|
jamie@104
|
483 lpc[i - 1 - j] += r * tmp;
|
jamie@104
|
484 }
|
jamie@104
|
485 if (i % 2) lpc[j] += lpc[j] * r;
|
jamie@104
|
486
|
jamie@104
|
487 error *= 1 - r * r;
|
jamie@104
|
488 }
|
jamie@104
|
489
|
jamie@104
|
490 return XTRACT_SUCCESS;
|
jamie@104
|
491 }
|
jamie@104
|
492
|
jamie@146
|
493 int xtract_lpcc(const double *data, const int N, const void *argv, double *result)
|
jamie@140
|
494 {
|
jamie@104
|
495
|
jamie@104
|
496 /* Given N lpc coefficients extract an LPC cepstrum of size argv[0] */
|
jamie@104
|
497 /* Based on an an algorithm by rabiner and Juang */
|
jamie@104
|
498
|
jamie@104
|
499 int n, k;
|
jamie@146
|
500 double sum;
|
jamie@104
|
501 int order = N - 1; /* Eventually change this to Q = 3/2 p as suggested in Rabiner */
|
jamie@140
|
502 int cep_length;
|
jamie@120
|
503
|
jamie@104
|
504 if(argv == NULL)
|
jamie@115
|
505 cep_length = N - 1; /* FIX: if we're going to have default values, they should come from the descriptor */
|
jamie@104
|
506 else
|
jamie@115
|
507 cep_length = *(int *)argv;
|
jamie@146
|
508 //cep_length = (int)((double *)argv)[0];
|
jamie@104
|
509
|
jamie@146
|
510 memset(result, 0, cep_length * sizeof(double));
|
jamie@104
|
511
|
jamie@140
|
512 for (n = 1; n <= order && n <= cep_length; n++)
|
jamie@140
|
513 {
|
jamie@146
|
514 sum = 0.0;
|
jamie@104
|
515 for (k = 1; k < n; k++)
|
jamie@104
|
516 sum += k * result[k-1] * data[n - k];
|
jamie@104
|
517 result[n-1] = data[n] + sum / n;
|
jamie@104
|
518 }
|
jamie@104
|
519
|
jamie@104
|
520 /* be wary of these interpolated values */
|
jamie@140
|
521 for(n = order + 1; n <= cep_length; n++)
|
jamie@140
|
522 {
|
jamie@146
|
523 sum = 0.0;
|
jamie@104
|
524 for (k = n - (order - 1); k < n; k++)
|
jamie@104
|
525 sum += k * result[k-1] * data[n - k];
|
jamie@104
|
526 result[n-1] = sum / n;
|
jamie@104
|
527 }
|
jamie@104
|
528
|
jamie@104
|
529 return XTRACT_SUCCESS;
|
jamie@104
|
530
|
jamie@104
|
531 }
|
jamie@146
|
532 //int xtract_lpcc_s(const double *data, const int N, const void *argv, double *result){
|
jamie@104
|
533 // return XTRACT_SUCCESS;
|
jamie@104
|
534 //}
|
jamie@104
|
535
|
jamie@146
|
536 int xtract_subbands(const double *data, const int N, const void *argv, double *result)
|
jamie@140
|
537 {
|
jamie@104
|
538
|
jamie@114
|
539 int n, bw, xtract_func, nbands, scale, start, lower, *argi, rv;
|
jamie@114
|
540
|
jamie@114
|
541 argi = (int *)argv;
|
jamie@114
|
542
|
jamie@114
|
543 xtract_func = argi[0];
|
jamie@114
|
544 nbands = argi[1];
|
jamie@114
|
545 scale = argi[2];
|
jamie@114
|
546 start = argi[3];
|
jamie@114
|
547
|
jamie@114
|
548 if(scale == XTRACT_LINEAR_SUBBANDS)
|
jamie@114
|
549 bw = floorf((N - start) / nbands);
|
jamie@114
|
550 else
|
jamie@114
|
551 bw = start;
|
jamie@114
|
552
|
jamie@114
|
553 lower = start;
|
jamie@115
|
554 rv = XTRACT_SUCCESS;
|
jamie@114
|
555
|
jamie@140
|
556 for(n = 0; n < nbands; n++)
|
jamie@140
|
557 {
|
jamie@114
|
558
|
jamie@114
|
559 /* Bounds sanity check */
|
jamie@140
|
560 if(lower >= N || lower + bw >= N)
|
jamie@140
|
561 {
|
jamie@120
|
562 // printf("n: %d\n", n);
|
jamie@146
|
563 result[n] = 0.0;
|
jamie@114
|
564 continue;
|
jamie@115
|
565 }
|
jamie@114
|
566
|
jamie@114
|
567 rv = xtract[xtract_func](data+lower, bw, NULL, &result[n]);
|
jamie@114
|
568
|
jamie@114
|
569 if(rv != XTRACT_SUCCESS)
|
jamie@114
|
570 return rv;
|
jamie@114
|
571
|
jamie@140
|
572 switch(scale)
|
jamie@140
|
573 {
|
jamie@140
|
574 case XTRACT_OCTAVE_SUBBANDS:
|
jamie@140
|
575 lower += bw;
|
jamie@140
|
576 bw = lower;
|
jamie@140
|
577 break;
|
jamie@140
|
578 case XTRACT_LINEAR_SUBBANDS:
|
jamie@140
|
579 lower += bw;
|
jamie@140
|
580 break;
|
jamie@114
|
581 }
|
jamie@114
|
582
|
jamie@114
|
583 }
|
jamie@114
|
584
|
jamie@114
|
585 return rv;
|
jamie@114
|
586
|
jamie@114
|
587 }
|
jamie@114
|
588
|
jamie@114
|
589
|
jamie@114
|
590
|