jamie@1
|
1 /* libxtract feature extraction library
|
jamie@1
|
2 *
|
jamie@1
|
3 * Copyright (C) 2006 Jamie Bullock
|
jamie@1
|
4 *
|
jamie@1
|
5 * This program is free software; you can redistribute it and/or modify
|
jamie@1
|
6 * it under the terms of the GNU General Public License as published by
|
jamie@1
|
7 * the Free Software Foundation; either version 2 of the License, or
|
jamie@1
|
8 * (at your option) any later version.
|
jamie@1
|
9 *
|
jamie@1
|
10 * This program is distributed in the hope that it will be useful,
|
jamie@1
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
jamie@1
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
jamie@1
|
13 * GNU General Public License for more details.
|
jamie@1
|
14 *
|
jamie@1
|
15 * You should have received a copy of the GNU General Public License
|
jamie@1
|
16 * along with this program; if not, write to the Free Software
|
jamie@1
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
jamie@1
|
18 * USA.
|
jamie@1
|
19 */
|
jamie@1
|
20
|
jamie@1
|
21
|
jamie@1
|
22 /* xtract_vector.c: defines functions that extract a feature as a single value from an input vector */
|
jamie@1
|
23
|
jamie@1
|
24 #include <math.h>
|
jamie@43
|
25 #include <string.h>
|
jamie@43
|
26 #include <stdlib.h>
|
jamie@30
|
27
|
jamie@98
|
28 #include "xtract/libxtract.h"
|
jamie@98
|
29 #include "xtract_macros_private.h"
|
jamie@98
|
30
|
jamie@85
|
31 #ifndef roundf
|
jamie@85
|
32 float roundf(float f){
|
jamie@85
|
33 if (f - (int)f >= 0.5)
|
jamie@85
|
34 return (float)((int)f + 1);
|
jamie@85
|
35 else
|
jamie@85
|
36 return (float)((int)f);
|
jamie@85
|
37 }
|
jamie@85
|
38 #endif
|
jamie@85
|
39
|
jamie@30
|
40 #ifdef XTRACT_FFT
|
jamie@30
|
41
|
jamie@1
|
42 #include <fftw3.h>
|
jamie@98
|
43 #include "xtract_globals_private.h"
|
jamie@98
|
44 #include "xtract_macros_private.h"
|
jamie@1
|
45
|
jamie@54
|
46 int xtract_spectrum(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
47
|
jamie@56
|
48 float *input, *rfft, q, temp;
|
jamie@43
|
49 size_t bytes;
|
jamie@98
|
50 int n , NxN, M, vector, withDC, argc;
|
jamie@98
|
51 //fftwf_plan plan;
|
jamie@98
|
52
|
jamie@98
|
53 vector = argc = withDC = 0;
|
jamie@1
|
54
|
jamie@54
|
55 M = N >> 1;
|
jamie@56
|
56 NxN = XTRACT_SQ(N);
|
jamie@54
|
57
|
jamie@54
|
58 rfft = (float *)fftwf_malloc(N * sizeof(float));
|
jamie@43
|
59 input = (float *)malloc(bytes = N * sizeof(float));
|
jamie@43
|
60 input = memcpy(input, data, bytes);
|
jamie@1
|
61
|
jamie@56
|
62 q = *(float *)argv;
|
jamie@54
|
63 vector = (int)*((float *)argv+1);
|
jamie@70
|
64 withDC = (int)*((float *)argv+2);
|
jamie@46
|
65
|
jamie@56
|
66 XTRACT_CHECK_q;
|
jamie@46
|
67
|
jamie@102
|
68 if(fft_plans.spectrum_plan == NULL){
|
jamie@98
|
69 /* FIX: Not sure this should really be here. Might introduce
|
jamie@98
|
70 * DEBUG_POST macro, or some kind of error handler, or leave it to the
|
jamie@98
|
71 * caller... */
|
jamie@98
|
72 fprintf(stderr,
|
jamie@98
|
73 "libxtract: Error: xtract_spectrum() has uninitialised plan\n");
|
jamie@98
|
74 return XTRACT_NO_RESULT;
|
jamie@98
|
75 }
|
jamie@98
|
76
|
jamie@102
|
77 fftwf_execute_r2r(fft_plans.spectrum_plan, input, rfft);
|
jamie@54
|
78
|
jamie@54
|
79 switch(vector){
|
jamie@67
|
80
|
jamie@56
|
81 case XTRACT_LOG_MAGNITUDE_SPECTRUM:
|
jamie@67
|
82 for(n = 1; n < M; n++){
|
jamie@67
|
83 if ((temp = XTRACT_SQ(rfft[n]) +
|
jamie@70
|
84 XTRACT_SQ(rfft[N - n])) > XTRACT_LOG_LIMIT)
|
jamie@54
|
85 temp = log(sqrt(temp) / N);
|
jamie@54
|
86 else
|
jamie@56
|
87 temp = XTRACT_LOG_LIMIT_DB;
|
jamie@70
|
88 if(withDC) {
|
jamie@70
|
89 result[n] =
|
jamie@70
|
90 /*Normalise*/
|
jamie@70
|
91 (temp + XTRACT_DB_SCALE_OFFSET) /
|
jamie@70
|
92 XTRACT_DB_SCALE_OFFSET;
|
jamie@70
|
93 result[M + n + 1] = n * q;
|
jamie@70
|
94 }
|
jamie@70
|
95 else {
|
jamie@70
|
96 result[n - 1] =
|
jamie@70
|
97 (temp + XTRACT_DB_SCALE_OFFSET) /
|
jamie@70
|
98 XTRACT_DB_SCALE_OFFSET;
|
jamie@70
|
99 result[M + n - 1] = n * q;
|
jamie@70
|
100 }
|
jamie@54
|
101 }
|
jamie@54
|
102 break;
|
jamie@67
|
103
|
jamie@56
|
104 case XTRACT_POWER_SPECTRUM:
|
jamie@67
|
105 for(n = 1; n < M; n++){
|
jamie@70
|
106 if(withDC){
|
jamie@70
|
107 result[n] = (XTRACT_SQ(rfft[n]) + XTRACT_SQ(rfft[N - n]))
|
jamie@70
|
108 / NxN;
|
jamie@70
|
109 result[M + n + 1] = n * q;
|
jamie@70
|
110 }
|
jamie@70
|
111 else {
|
jamie@70
|
112 result[n - 1] =
|
jamie@70
|
113 (XTRACT_SQ(rfft[n]) + XTRACT_SQ(rfft[N - n])) / NxN;
|
jamie@70
|
114 result[M + n - 1] = n * q;
|
jamie@70
|
115 }
|
jamie@54
|
116 }
|
jamie@54
|
117 break;
|
jamie@67
|
118
|
jamie@56
|
119 case XTRACT_LOG_POWER_SPECTRUM:
|
jamie@67
|
120 for(n = 1; n < M; n++){
|
jamie@70
|
121 if ((temp = XTRACT_SQ(rfft[n]) + XTRACT_SQ(rfft[N - n])) >
|
jamie@67
|
122 XTRACT_LOG_LIMIT)
|
jamie@54
|
123 temp = log(temp / NxN);
|
jamie@54
|
124 else
|
jamie@56
|
125 temp = XTRACT_LOG_LIMIT_DB;
|
jamie@70
|
126 if(withDC){
|
jamie@70
|
127 result[n] = (temp + XTRACT_DB_SCALE_OFFSET) /
|
jamie@70
|
128 XTRACT_DB_SCALE_OFFSET;
|
jamie@70
|
129 result[M + n + 1] = n * q;
|
jamie@70
|
130 }
|
jamie@70
|
131 else {
|
jamie@70
|
132 result[n - 1] = (temp + XTRACT_DB_SCALE_OFFSET) /
|
jamie@70
|
133 XTRACT_DB_SCALE_OFFSET;
|
jamie@70
|
134 result[M + n - 1] = n * q;
|
jamie@70
|
135 }
|
jamie@54
|
136 }
|
jamie@54
|
137 break;
|
jamie@67
|
138
|
jamie@54
|
139 default:
|
jamie@54
|
140 /* MAGNITUDE_SPECTRUM */
|
jamie@67
|
141 for(n = 1; n < M; n++){
|
jamie@70
|
142 if(withDC){
|
jamie@70
|
143 result[n] = sqrt(XTRACT_SQ(rfft[n]) +
|
jamie@70
|
144 XTRACT_SQ(rfft[N - n])) / N;
|
jamie@70
|
145 result[M + n + 1] = n * q;
|
jamie@70
|
146 }
|
jamie@70
|
147 else {
|
jamie@70
|
148 result[n - 1] = sqrt(XTRACT_SQ(rfft[n]) +
|
jamie@70
|
149 XTRACT_SQ(rfft[N - n])) / N;
|
jamie@70
|
150 result[M + n - 1] = n * q;
|
jamie@70
|
151 }
|
jamie@54
|
152 }
|
jamie@54
|
153 break;
|
jamie@1
|
154 }
|
jamie@1
|
155
|
jamie@70
|
156 if(withDC){
|
jamie@70
|
157 /* The DC component */
|
jamie@70
|
158 result[0] = XTRACT_SQ(rfft[0]);
|
jamie@70
|
159 result[M + 1] = 0.f;
|
jamie@70
|
160 /* The Nyquist */
|
jamie@70
|
161 result[M] = XTRACT_SQ(rfft[M]);
|
jamie@70
|
162 result[N + 1] = q * M;
|
jamie@70
|
163 }
|
jamie@70
|
164 else {
|
jamie@70
|
165 /* The Nyquist */
|
jamie@98
|
166 result[M - 1] = (float)XTRACT_SQ(rfft[M]);
|
jamie@70
|
167 result[N - 1] = q * M;
|
jamie@70
|
168 }
|
jamie@1
|
169
|
jamie@54
|
170 fftwf_free(rfft);
|
jamie@43
|
171 free(input);
|
jamie@1
|
172
|
jamie@56
|
173 return XTRACT_SUCCESS;
|
jamie@1
|
174 }
|
jamie@1
|
175
|
jamie@43
|
176 int xtract_autocorrelation_fft(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
177
|
jamie@75
|
178 float *freq, *time;
|
jamie@75
|
179 int n, M;
|
jamie@98
|
180 //fftwf_plan plan;
|
jamie@1
|
181
|
jamie@75
|
182 M = N << 1;
|
jamie@43
|
183
|
jamie@75
|
184 freq = (float *)fftwf_malloc(M * sizeof(float));
|
jamie@75
|
185 /* Zero pad the input vector */
|
jamie@75
|
186 time = (float *)calloc(M, sizeof(float));
|
jamie@75
|
187 time = memcpy(time, data, N * sizeof(float));
|
jamie@75
|
188
|
jamie@102
|
189 fftwf_execute_r2r(fft_plans.autocorrelation_fft_plan_1, time, freq);
|
jamie@98
|
190 //plan = fftwf_plan_r2r_1d(M, time, freq, FFTW_R2HC, FFTW_ESTIMATE);
|
jamie@1
|
191
|
jamie@98
|
192 //fftwf_execute(plan);
|
jamie@75
|
193
|
jamie@76
|
194 for(n = 1; n < N; n++){
|
jamie@75
|
195 freq[n] = XTRACT_SQ(freq[n]) + XTRACT_SQ(freq[M - n]);
|
jamie@75
|
196 freq[M - n] = 0.f;
|
jamie@75
|
197 }
|
jamie@1
|
198
|
jamie@75
|
199 freq[0] = XTRACT_SQ(freq[0]);
|
jamie@75
|
200 freq[N] = XTRACT_SQ(freq[N]);
|
jamie@75
|
201
|
jamie@98
|
202 //plan = fftwf_plan_r2r_1d(M, freq, time, FFTW_HC2R, FFTW_ESTIMATE);
|
jamie@75
|
203
|
jamie@98
|
204 //fftwf_execute(plan);
|
jamie@98
|
205
|
jamie@102
|
206 fftwf_execute_r2r(fft_plans.autocorrelation_fft_plan_2, freq, time);
|
jamie@75
|
207
|
jamie@75
|
208 /* Normalisation factor */
|
jamie@75
|
209 M = M * N;
|
jamie@75
|
210
|
jamie@75
|
211 for(n = 0; n < N; n++)
|
jamie@75
|
212 result[n] = time[n] / (float)M;
|
jamie@75
|
213 /* result[n] = time[n+1] / (float)M; */
|
jamie@75
|
214
|
jamie@98
|
215 //fftwf_destroy_plan(plan);
|
jamie@75
|
216 fftwf_free(freq);
|
jamie@75
|
217 free(time);
|
jamie@38
|
218
|
jamie@56
|
219 return XTRACT_SUCCESS;
|
jamie@1
|
220 }
|
jamie@1
|
221
|
jamie@43
|
222 int xtract_mfcc(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
223
|
jamie@30
|
224 xtract_mel_filter *f;
|
jamie@30
|
225 int n, filter;
|
jamie@30
|
226
|
jamie@30
|
227 f = (xtract_mel_filter *)argv;
|
jamie@39
|
228
|
jamie@30
|
229 for(filter = 0; filter < f->n_filters; filter++){
|
danstowell@68
|
230 result[filter] = 0.f;
|
jamie@30
|
231 for(n = 0; n < N; n++){
|
jamie@71
|
232 result[filter] += data[n] * f->filters[filter][n];
|
jamie@30
|
233 }
|
danstowell@69
|
234 result[filter] = log(result[filter] < XTRACT_LOG_LIMIT ? XTRACT_LOG_LIMIT : result[filter]);
|
jamie@30
|
235 }
|
jamie@30
|
236
|
jamie@30
|
237 xtract_dct(result, f->n_filters, NULL, result);
|
jamie@43
|
238
|
jamie@56
|
239 return XTRACT_SUCCESS;
|
jamie@30
|
240 }
|
jamie@30
|
241
|
jamie@43
|
242 int xtract_dct(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
243
|
jamie@98
|
244 //fftwf_plan plan;
|
jamie@43
|
245
|
jamie@98
|
246 //plan =
|
jamie@98
|
247 // fftwf_plan_r2r_1d(N, (float *) data, result, FFTW_REDFT00, FFTW_ESTIMATE);
|
jamie@30
|
248
|
jamie@102
|
249 fftwf_execute_r2r(fft_plans.dct_plan, (float *)data, result);
|
jamie@98
|
250 //fftwf_execute(plan);
|
jamie@98
|
251 //fftwf_destroy_plan(plan);
|
jamie@38
|
252
|
jamie@56
|
253 return XTRACT_SUCCESS;
|
jamie@30
|
254 }
|
jamie@30
|
255
|
jamie@30
|
256 #else
|
jamie@30
|
257
|
jamie@67
|
258 int xtract_spectrum(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
259
|
danstowell@66
|
260 XTRACT_NEEDS_FFTW;
|
danstowell@66
|
261 return XTRACT_NO_RESULT;
|
jamie@30
|
262
|
jamie@30
|
263 }
|
jamie@30
|
264
|
jamie@43
|
265 int xtract_autocorrelation_fft(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
266
|
danstowell@66
|
267 XTRACT_NEEDS_FFTW;
|
danstowell@66
|
268 return XTRACT_NO_RESULT;
|
jamie@30
|
269
|
jamie@30
|
270 }
|
jamie@30
|
271
|
jamie@43
|
272 int xtract_mfcc(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
273
|
danstowell@66
|
274 XTRACT_NEEDS_FFTW;
|
danstowell@66
|
275 return XTRACT_NO_RESULT;
|
jamie@30
|
276
|
jamie@30
|
277 }
|
jamie@30
|
278
|
jamie@43
|
279 int xtract_dct(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
280
|
danstowell@66
|
281 XTRACT_NEEDS_FFTW;
|
danstowell@66
|
282 return XTRACT_NO_RESULT;
|
jamie@30
|
283
|
jamie@30
|
284 }
|
jamie@30
|
285
|
jamie@30
|
286 #endif
|
jamie@30
|
287
|
jamie@43
|
288 int xtract_autocorrelation(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
289
|
jamie@30
|
290 /* Naive time domain implementation */
|
jamie@30
|
291
|
jamie@30
|
292 int n = N, i;
|
jamie@30
|
293
|
jamie@30
|
294 float corr;
|
jamie@30
|
295
|
jamie@30
|
296 while(n--){
|
jamie@30
|
297 corr = 0;
|
jamie@30
|
298 for(i = 0; i < N - n; i++){
|
jamie@30
|
299 corr += data[i] * data[i + n];
|
jamie@30
|
300 }
|
jamie@30
|
301 result[n] = corr / N;
|
jamie@30
|
302 }
|
jamie@38
|
303
|
jamie@56
|
304 return XTRACT_SUCCESS;
|
jamie@30
|
305 }
|
jamie@30
|
306
|
jamie@43
|
307 int xtract_amdf(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
308
|
jamie@1
|
309 int n = N, i;
|
jamie@1
|
310
|
jamie@6
|
311 float md, temp;
|
jamie@1
|
312
|
jamie@1
|
313 while(n--){
|
jamie@1
|
314 md = 0;
|
jamie@1
|
315 for(i = 0; i < N - n; i++){
|
jamie@6
|
316 temp = data[i] - data[i + n];
|
jamie@6
|
317 temp = (temp < 0 ? -temp : temp);
|
jamie@6
|
318 md += temp;
|
jamie@1
|
319 }
|
jamie@1
|
320 result[n] = md / N;
|
jamie@1
|
321 }
|
jamie@38
|
322
|
jamie@56
|
323 return XTRACT_SUCCESS;
|
jamie@1
|
324 }
|
jamie@1
|
325
|
jamie@43
|
326 int xtract_asdf(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
327
|
jamie@1
|
328 int n = N, i;
|
jamie@1
|
329
|
jamie@1
|
330 float sd;
|
jamie@1
|
331
|
jamie@1
|
332 while(n--){
|
jamie@1
|
333 sd = 0;
|
jamie@1
|
334 for(i = 0; i < N - n; i++){
|
jamie@6
|
335 /*sd = 1;*/
|
jamie@56
|
336 sd += XTRACT_SQ(data[i] - data[i + n]);
|
jamie@1
|
337 }
|
jamie@1
|
338 result[n] = sd / N;
|
jamie@1
|
339 }
|
jamie@38
|
340
|
jamie@56
|
341 return XTRACT_SUCCESS;
|
jamie@1
|
342 }
|
jamie@1
|
343
|
jamie@43
|
344 int xtract_bark_coefficients(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
345
|
jamie@1
|
346 int *limits, band, n;
|
jamie@1
|
347
|
jamie@1
|
348 limits = (int *)argv;
|
jamie@1
|
349
|
jamie@59
|
350 for(band = 0; band < XTRACT_BARK_BANDS - 1; band++){
|
jamie@1
|
351 for(n = limits[band]; n < limits[band + 1]; n++)
|
jamie@1
|
352 result[band] += data[n];
|
jamie@1
|
353 }
|
jamie@38
|
354
|
jamie@56
|
355 return XTRACT_SUCCESS;
|
jamie@1
|
356 }
|
jamie@1
|
357
|
jamie@52
|
358 int xtract_peak_spectrum(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
359
|
jamie@56
|
360 float threshold, max, y, y2, y3, p, q, *input = NULL;
|
jamie@43
|
361 size_t bytes;
|
jamie@59
|
362 int n = N, rv = XTRACT_SUCCESS;
|
jamie@49
|
363
|
jamie@56
|
364 threshold = max = y = y2 = y3 = p = q = 0.f;
|
jamie@1
|
365
|
jamie@1
|
366 if(argv != NULL){
|
jamie@56
|
367 q = ((float *)argv)[0];
|
jamie@55
|
368 threshold = ((float *)argv)[1];
|
jamie@1
|
369 }
|
jamie@49
|
370 else
|
jamie@56
|
371 rv = XTRACT_BAD_ARGV;
|
jamie@49
|
372
|
jamie@55
|
373 if(threshold < 0 || threshold > 100){
|
jamie@55
|
374 threshold = 0;
|
jamie@56
|
375 rv = XTRACT_BAD_ARGV;
|
jamie@1
|
376 }
|
jamie@1
|
377
|
jamie@56
|
378 XTRACT_CHECK_q;
|
jamie@49
|
379
|
jamie@98
|
380 input = (float *)calloc(N, sizeof(float));
|
jamie@98
|
381
|
jamie@98
|
382 bytes = N * sizeof(float);
|
jamie@43
|
383
|
jamie@43
|
384 if(input != NULL)
|
jamie@43
|
385 input = memcpy(input, data, bytes);
|
jamie@43
|
386 else
|
jamie@56
|
387 return XTRACT_MALLOC_FAILED;
|
jamie@43
|
388
|
jamie@45
|
389 while(n--)
|
jamie@56
|
390 max = XTRACT_MAX(max, input[n]);
|
jamie@1
|
391
|
jamie@55
|
392 threshold *= .01 * max;
|
jamie@1
|
393
|
jamie@1
|
394 result[0] = 0;
|
jamie@59
|
395 result[N] = 0;
|
jamie@1
|
396
|
jamie@59
|
397 for(n = 1; n < N; n++){
|
jamie@55
|
398 if(input[n] >= threshold){
|
jamie@43
|
399 if(input[n] > input[n - 1] && input[n] > input[n + 1]){
|
jamie@59
|
400 result[N + n] = q * (n + (p = .5 * (y = input[n-1] -
|
jamie@52
|
401 (y3 = input[n+1])) / (input[n - 1] - 2 *
|
jamie@52
|
402 (y2 = input[n]) + input[n + 1])));
|
jamie@52
|
403 result[n] = y2 - .25 * (y - y3) * p;
|
jamie@1
|
404 }
|
jamie@1
|
405 else{
|
jamie@1
|
406 result[n] = 0;
|
jamie@59
|
407 result[N + n] = 0;
|
jamie@1
|
408 }
|
jamie@1
|
409 }
|
jamie@1
|
410 else{
|
jamie@1
|
411 result[n] = 0;
|
jamie@59
|
412 result[N + n] = 0;
|
jamie@1
|
413 }
|
jamie@1
|
414 }
|
jamie@1
|
415
|
jamie@43
|
416 free(input);
|
jamie@56
|
417 return (rv ? rv : XTRACT_SUCCESS);
|
jamie@1
|
418 }
|
jamie@41
|
419
|
jamie@52
|
420 int xtract_harmonic_spectrum(const float *data, const int N, const void *argv, float *result){
|
jamie@38
|
421
|
jamie@38
|
422 int n = (N >> 1), M = n;
|
jamie@38
|
423
|
jamie@43
|
424 const float *freqs, *amps;
|
jamie@55
|
425 float f0, threshold, ratio, nearest, distance;
|
jamie@38
|
426
|
jamie@52
|
427 amps = data;
|
jamie@52
|
428 freqs = data + n;
|
jamie@38
|
429 f0 = *((float *)argv);
|
jamie@55
|
430 threshold = *((float *)argv+1);
|
jamie@38
|
431
|
jamie@38
|
432 ratio = nearest = distance = 0.f;
|
jamie@38
|
433
|
jamie@38
|
434 while(n--){
|
jamie@38
|
435 if(freqs[n]){
|
jamie@38
|
436 ratio = freqs[n] / f0;
|
jamie@85
|
437 nearest = roundf(ratio);
|
jamie@38
|
438 distance = fabs(nearest - ratio);
|
jamie@55
|
439 if(distance > threshold)
|
jamie@38
|
440 result[n] = result[M + n] = 0.f;
|
jamie@42
|
441 else {
|
jamie@52
|
442 result[n] = amps[n];
|
jamie@52
|
443 result[M + n] = freqs[n];
|
jamie@42
|
444 }
|
jamie@38
|
445 }
|
jamie@38
|
446 else
|
jamie@38
|
447 result[n] = result[M + n] = 0.f;
|
jamie@38
|
448 }
|
jamie@56
|
449 return XTRACT_SUCCESS;
|
jamie@38
|
450 }
|
jamie@38
|
451
|
jamie@104
|
452 int xtract_lpc(const float *data, const int N, const void *argv, float *result){
|
jamie@104
|
453
|
jamie@104
|
454 int i, j, k, M, L;
|
jamie@104
|
455 float r = 0.f,
|
jamie@104
|
456 error = 0.f;
|
jamie@104
|
457
|
jamie@104
|
458 float *ref = NULL,
|
jamie@104
|
459 *lpc = NULL ;
|
jamie@104
|
460
|
jamie@104
|
461 error = data[0];
|
jamie@104
|
462 k = N; /* The length of *data */
|
jamie@104
|
463 L = N - 1; /* The number of LPC coefficients */
|
jamie@104
|
464 M = L * 2; /* The length of *result */
|
jamie@104
|
465 ref = result;
|
jamie@104
|
466 lpc = result+L;
|
jamie@104
|
467
|
jamie@104
|
468 if(error == 0.0){
|
jamie@104
|
469 for(i = 0; i < M; i++)
|
jamie@104
|
470 result[i] = 0.f;
|
jamie@104
|
471 return XTRACT_NO_RESULT;
|
jamie@104
|
472 }
|
jamie@104
|
473
|
jamie@104
|
474 memset(result, 0, M * sizeof(float));
|
jamie@104
|
475
|
jamie@104
|
476 for (i = 0; i < L; i++) {
|
jamie@104
|
477
|
jamie@104
|
478 /* Sum up this iteration's reflection coefficient. */
|
jamie@104
|
479 r = -data[i + 1];
|
jamie@104
|
480 for (j = 0; j < i; j++)
|
jamie@104
|
481 r -= lpc[j] * data[i - j];
|
jamie@104
|
482 ref[i] = r /= error;
|
jamie@104
|
483
|
jamie@104
|
484 /* Update LPC coefficients and total error. */
|
jamie@104
|
485 lpc[i] = r;
|
jamie@104
|
486 for (j = 0; j < i / 2; j++) {
|
jamie@104
|
487 float tmp = lpc[j];
|
jamie@104
|
488 lpc[j] = r * lpc[i - 1 - j];
|
jamie@104
|
489 lpc[i - 1 - j] += r * tmp;
|
jamie@104
|
490 }
|
jamie@104
|
491 if (i % 2) lpc[j] += lpc[j] * r;
|
jamie@104
|
492
|
jamie@104
|
493 error *= 1 - r * r;
|
jamie@104
|
494 }
|
jamie@104
|
495
|
jamie@104
|
496 return XTRACT_SUCCESS;
|
jamie@104
|
497 }
|
jamie@104
|
498
|
jamie@104
|
499 int xtract_lpcc(const float *data, const int N, const void *argv, float *result){
|
jamie@104
|
500
|
jamie@104
|
501 /* Given N lpc coefficients extract an LPC cepstrum of size argv[0] */
|
jamie@104
|
502 /* Based on an an algorithm by rabiner and Juang */
|
jamie@104
|
503
|
jamie@104
|
504 int n, k;
|
jamie@104
|
505 float sum;
|
jamie@104
|
506 int order = N - 1; /* Eventually change this to Q = 3/2 p as suggested in Rabiner */
|
jamie@104
|
507 int cep_length;
|
jamie@104
|
508
|
jamie@104
|
509 if(argv == NULL)
|
jamie@104
|
510 cep_length = N - 1;
|
jamie@104
|
511 else
|
jamie@104
|
512 cep_length = (int)((float *)argv)[0];
|
jamie@104
|
513
|
jamie@104
|
514 memset(result, 0, cep_length * sizeof(float));
|
jamie@104
|
515
|
jamie@104
|
516 for (n = 1; n <= order && n <= cep_length; n++){
|
jamie@104
|
517 sum = 0.f;
|
jamie@104
|
518 for (k = 1; k < n; k++)
|
jamie@104
|
519 sum += k * result[k-1] * data[n - k];
|
jamie@104
|
520 result[n-1] = data[n] + sum / n;
|
jamie@104
|
521 }
|
jamie@104
|
522
|
jamie@104
|
523 /* be wary of these interpolated values */
|
jamie@104
|
524 for(n = order + 1; n <= cep_length; n++){
|
jamie@104
|
525 sum = 0.f;
|
jamie@104
|
526 for (k = n - (order - 1); k < n; k++)
|
jamie@104
|
527 sum += k * result[k-1] * data[n - k];
|
jamie@104
|
528 result[n-1] = sum / n;
|
jamie@104
|
529 }
|
jamie@104
|
530
|
jamie@104
|
531 return XTRACT_SUCCESS;
|
jamie@104
|
532
|
jamie@104
|
533 }
|
jamie@104
|
534 //int xtract_lpcc_s(const float *data, const int N, const void *argv, float *result){
|
jamie@104
|
535 // return XTRACT_SUCCESS;
|
jamie@104
|
536 //}
|
jamie@104
|
537
|
jamie@104
|
538
|