jamie@1
|
1 /* libxtract feature extraction library
|
jamie@1
|
2 *
|
jamie@1
|
3 * Copyright (C) 2006 Jamie Bullock
|
jamie@1
|
4 *
|
jamie@1
|
5 * This program is free software; you can redistribute it and/or modify
|
jamie@1
|
6 * it under the terms of the GNU General Public License as published by
|
jamie@1
|
7 * the Free Software Foundation; either version 2 of the License, or
|
jamie@1
|
8 * (at your option) any later version.
|
jamie@1
|
9 *
|
jamie@1
|
10 * This program is distributed in the hope that it will be useful,
|
jamie@1
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
jamie@1
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
jamie@1
|
13 * GNU General Public License for more details.
|
jamie@1
|
14 *
|
jamie@1
|
15 * You should have received a copy of the GNU General Public License
|
jamie@1
|
16 * along with this program; if not, write to the Free Software
|
jamie@1
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
jamie@1
|
18 * USA.
|
jamie@1
|
19 */
|
jamie@1
|
20
|
jamie@1
|
21
|
jamie@1
|
22 /* xtract_vector.c: defines functions that extract a feature as a single value from an input vector */
|
jamie@1
|
23
|
jamie@1
|
24 #include <math.h>
|
jamie@43
|
25 #include <string.h>
|
jamie@43
|
26 #include <stdlib.h>
|
jamie@30
|
27
|
jamie@98
|
28 #include "xtract/libxtract.h"
|
jamie@98
|
29 #include "xtract_macros_private.h"
|
jamie@98
|
30
|
jamie@85
|
31 #ifndef roundf
|
jamie@85
|
32 float roundf(float f){
|
jamie@85
|
33 if (f - (int)f >= 0.5)
|
jamie@85
|
34 return (float)((int)f + 1);
|
jamie@85
|
35 else
|
jamie@85
|
36 return (float)((int)f);
|
jamie@85
|
37 }
|
jamie@85
|
38 #endif
|
jamie@85
|
39
|
jamie@30
|
40 #ifdef XTRACT_FFT
|
jamie@30
|
41
|
jamie@1
|
42 #include <fftw3.h>
|
jamie@98
|
43 #include "xtract_globals_private.h"
|
jamie@98
|
44 #include "xtract_macros_private.h"
|
jamie@1
|
45
|
jamie@54
|
46 int xtract_spectrum(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
47
|
jamie@105
|
48 float *input, *rfft, q, temp, max;
|
jamie@43
|
49 size_t bytes;
|
jamie@111
|
50 int n,
|
jamie@111
|
51 m,
|
jamie@105
|
52 NxN,
|
jamie@105
|
53 M,
|
jamie@105
|
54 vector,
|
jamie@105
|
55 withDC,
|
jamie@105
|
56 argc,
|
jamie@105
|
57 normalise;
|
jamie@98
|
58
|
jamie@105
|
59 vector = argc = withDC = normalise = 0;
|
jamie@1
|
60
|
jamie@54
|
61 M = N >> 1;
|
jamie@56
|
62 NxN = XTRACT_SQ(N);
|
jamie@54
|
63
|
jamie@54
|
64 rfft = (float *)fftwf_malloc(N * sizeof(float));
|
jamie@43
|
65 input = (float *)malloc(bytes = N * sizeof(float));
|
jamie@43
|
66 input = memcpy(input, data, bytes);
|
jamie@1
|
67
|
jamie@56
|
68 q = *(float *)argv;
|
jamie@54
|
69 vector = (int)*((float *)argv+1);
|
jamie@70
|
70 withDC = (int)*((float *)argv+2);
|
jamie@105
|
71 normalise = (int)*((float *)argv+3);
|
jamie@105
|
72
|
jamie@105
|
73 temp = 0.f;
|
jamie@105
|
74 max = 0.f;
|
jamie@46
|
75
|
jamie@56
|
76 XTRACT_CHECK_q;
|
jamie@46
|
77
|
jamie@102
|
78 if(fft_plans.spectrum_plan == NULL){
|
jamie@98
|
79 fprintf(stderr,
|
jamie@98
|
80 "libxtract: Error: xtract_spectrum() has uninitialised plan\n");
|
jamie@98
|
81 return XTRACT_NO_RESULT;
|
jamie@98
|
82 }
|
jamie@98
|
83
|
jamie@102
|
84 fftwf_execute_r2r(fft_plans.spectrum_plan, input, rfft);
|
jamie@54
|
85
|
jamie@54
|
86 switch(vector){
|
jamie@67
|
87
|
jamie@56
|
88 case XTRACT_LOG_MAGNITUDE_SPECTRUM:
|
jamie@67
|
89 for(n = 1; n < M; n++){
|
jamie@67
|
90 if ((temp = XTRACT_SQ(rfft[n]) +
|
jamie@70
|
91 XTRACT_SQ(rfft[N - n])) > XTRACT_LOG_LIMIT)
|
jamie@54
|
92 temp = log(sqrt(temp) / N);
|
jamie@54
|
93 else
|
jamie@56
|
94 temp = XTRACT_LOG_LIMIT_DB;
|
jamie@111
|
95
|
jamie@111
|
96 if(withDC){
|
jamie@111
|
97 m = n;
|
jamie@111
|
98 result[M + m + 1] = n * q;
|
jamie@111
|
99 }
|
jamie@111
|
100 else{
|
jamie@111
|
101 m = n - 1;
|
jamie@111
|
102 result[M + m] = n * q;
|
jamie@111
|
103 }
|
jamie@111
|
104
|
jamie@111
|
105 result[m] =
|
jamie@111
|
106 /* Scaling */
|
jamie@111
|
107 (temp + XTRACT_DB_SCALE_OFFSET) /
|
jamie@111
|
108 XTRACT_DB_SCALE_OFFSET;
|
jamie@111
|
109
|
jamie@111
|
110 max = result[m] > max ? result[m] : max;
|
jamie@54
|
111 }
|
jamie@54
|
112 break;
|
jamie@67
|
113
|
jamie@56
|
114 case XTRACT_POWER_SPECTRUM:
|
jamie@67
|
115 for(n = 1; n < M; n++){
|
jamie@111
|
116 if(withDC){
|
jamie@111
|
117 m = n;
|
jamie@111
|
118 result[M + m + 1] = n * q;
|
jamie@111
|
119 }
|
jamie@111
|
120 else{
|
jamie@111
|
121 m = n - 1;
|
jamie@111
|
122 result[M + m] = n * q;
|
jamie@111
|
123 }
|
jamie@111
|
124 result[m] = (XTRACT_SQ(rfft[n]) + XTRACT_SQ(rfft[N - n])) / NxN;
|
jamie@111
|
125 max = result[m] > max ? result[m] : max;
|
jamie@54
|
126 }
|
jamie@54
|
127 break;
|
jamie@67
|
128
|
jamie@56
|
129 case XTRACT_LOG_POWER_SPECTRUM:
|
jamie@67
|
130 for(n = 1; n < M; n++){
|
jamie@70
|
131 if ((temp = XTRACT_SQ(rfft[n]) + XTRACT_SQ(rfft[N - n])) >
|
jamie@67
|
132 XTRACT_LOG_LIMIT)
|
jamie@54
|
133 temp = log(temp / NxN);
|
jamie@54
|
134 else
|
jamie@56
|
135 temp = XTRACT_LOG_LIMIT_DB;
|
jamie@111
|
136
|
jamie@111
|
137 if(withDC){
|
jamie@111
|
138 m = n;
|
jamie@111
|
139 result[M + m + 1] = n * q;
|
jamie@111
|
140 }
|
jamie@111
|
141 else{
|
jamie@111
|
142 m = n - 1;
|
jamie@111
|
143 result[M + m] = n * q;
|
jamie@111
|
144 }
|
jamie@111
|
145
|
jamie@111
|
146 result[m] = (temp + XTRACT_DB_SCALE_OFFSET) /
|
jamie@70
|
147 XTRACT_DB_SCALE_OFFSET;
|
jamie@111
|
148 max = result[m] > max ? result[m] : max;
|
jamie@54
|
149 }
|
jamie@54
|
150 break;
|
jamie@67
|
151
|
jamie@54
|
152 default:
|
jamie@54
|
153 /* MAGNITUDE_SPECTRUM */
|
jamie@67
|
154 for(n = 1; n < M; n++){
|
jamie@111
|
155 if(withDC){
|
jamie@111
|
156 m = n;
|
jamie@111
|
157 result[M + m + 1] = n * q;
|
jamie@111
|
158 }
|
jamie@111
|
159 else{
|
jamie@111
|
160 m = n - 1;
|
jamie@111
|
161 result[M + m] = n * q;
|
jamie@111
|
162 }
|
jamie@111
|
163
|
jamie@111
|
164 result[m] = sqrt(XTRACT_SQ(rfft[n]) +
|
jamie@111
|
165 XTRACT_SQ(rfft[N - n])) / N;
|
jamie@111
|
166 max = result[m] > max ? result[m] : max;
|
jamie@54
|
167 }
|
jamie@54
|
168 break;
|
jamie@1
|
169 }
|
jamie@1
|
170
|
jamie@70
|
171 if(withDC){
|
jamie@70
|
172 /* The DC component */
|
jamie@70
|
173 result[0] = XTRACT_SQ(rfft[0]);
|
jamie@70
|
174 result[M + 1] = 0.f;
|
jamie@105
|
175 max = result[0] > max ? result[0] : max;
|
jamie@70
|
176 /* The Nyquist */
|
jamie@70
|
177 result[M] = XTRACT_SQ(rfft[M]);
|
jamie@70
|
178 result[N + 1] = q * M;
|
jamie@105
|
179 max = result[M] > max ? result[M] : max;
|
jamie@70
|
180 }
|
jamie@70
|
181 else {
|
jamie@70
|
182 /* The Nyquist */
|
jamie@98
|
183 result[M - 1] = (float)XTRACT_SQ(rfft[M]);
|
jamie@70
|
184 result[N - 1] = q * M;
|
jamie@105
|
185 max = result[M - 1] > max ? result[M - 1] : max;
|
jamie@70
|
186 }
|
jamie@105
|
187
|
jamie@105
|
188 if(normalise){
|
jamie@105
|
189 for(n = 0; n < M; n++)
|
jamie@105
|
190 result[n] /= max;
|
jamie@105
|
191 }
|
jamie@105
|
192
|
jamie@54
|
193 fftwf_free(rfft);
|
jamie@43
|
194 free(input);
|
jamie@1
|
195
|
jamie@56
|
196 return XTRACT_SUCCESS;
|
jamie@1
|
197 }
|
jamie@1
|
198
|
jamie@43
|
199 int xtract_autocorrelation_fft(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
200
|
jamie@75
|
201 float *freq, *time;
|
jamie@75
|
202 int n, M;
|
jamie@98
|
203 //fftwf_plan plan;
|
jamie@1
|
204
|
jamie@75
|
205 M = N << 1;
|
jamie@43
|
206
|
jamie@75
|
207 freq = (float *)fftwf_malloc(M * sizeof(float));
|
jamie@75
|
208 /* Zero pad the input vector */
|
jamie@75
|
209 time = (float *)calloc(M, sizeof(float));
|
jamie@75
|
210 time = memcpy(time, data, N * sizeof(float));
|
jamie@75
|
211
|
jamie@102
|
212 fftwf_execute_r2r(fft_plans.autocorrelation_fft_plan_1, time, freq);
|
jamie@98
|
213 //plan = fftwf_plan_r2r_1d(M, time, freq, FFTW_R2HC, FFTW_ESTIMATE);
|
jamie@1
|
214
|
jamie@98
|
215 //fftwf_execute(plan);
|
jamie@75
|
216
|
jamie@76
|
217 for(n = 1; n < N; n++){
|
jamie@75
|
218 freq[n] = XTRACT_SQ(freq[n]) + XTRACT_SQ(freq[M - n]);
|
jamie@75
|
219 freq[M - n] = 0.f;
|
jamie@75
|
220 }
|
jamie@1
|
221
|
jamie@75
|
222 freq[0] = XTRACT_SQ(freq[0]);
|
jamie@75
|
223 freq[N] = XTRACT_SQ(freq[N]);
|
jamie@75
|
224
|
jamie@98
|
225 //plan = fftwf_plan_r2r_1d(M, freq, time, FFTW_HC2R, FFTW_ESTIMATE);
|
jamie@75
|
226
|
jamie@98
|
227 //fftwf_execute(plan);
|
jamie@98
|
228
|
jamie@102
|
229 fftwf_execute_r2r(fft_plans.autocorrelation_fft_plan_2, freq, time);
|
jamie@75
|
230
|
jamie@75
|
231 /* Normalisation factor */
|
jamie@75
|
232 M = M * N;
|
jamie@75
|
233
|
jamie@75
|
234 for(n = 0; n < N; n++)
|
jamie@75
|
235 result[n] = time[n] / (float)M;
|
jamie@75
|
236 /* result[n] = time[n+1] / (float)M; */
|
jamie@75
|
237
|
jamie@98
|
238 //fftwf_destroy_plan(plan);
|
jamie@75
|
239 fftwf_free(freq);
|
jamie@75
|
240 free(time);
|
jamie@38
|
241
|
jamie@56
|
242 return XTRACT_SUCCESS;
|
jamie@1
|
243 }
|
jamie@1
|
244
|
jamie@43
|
245 int xtract_mfcc(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
246
|
jamie@30
|
247 xtract_mel_filter *f;
|
jamie@30
|
248 int n, filter;
|
jamie@30
|
249
|
jamie@30
|
250 f = (xtract_mel_filter *)argv;
|
jamie@39
|
251
|
jamie@30
|
252 for(filter = 0; filter < f->n_filters; filter++){
|
danstowell@68
|
253 result[filter] = 0.f;
|
jamie@30
|
254 for(n = 0; n < N; n++){
|
jamie@71
|
255 result[filter] += data[n] * f->filters[filter][n];
|
jamie@30
|
256 }
|
danstowell@69
|
257 result[filter] = log(result[filter] < XTRACT_LOG_LIMIT ? XTRACT_LOG_LIMIT : result[filter]);
|
jamie@30
|
258 }
|
jamie@30
|
259
|
jamie@30
|
260 xtract_dct(result, f->n_filters, NULL, result);
|
jamie@43
|
261
|
jamie@56
|
262 return XTRACT_SUCCESS;
|
jamie@30
|
263 }
|
jamie@30
|
264
|
jamie@43
|
265 int xtract_dct(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
266
|
jamie@98
|
267 //fftwf_plan plan;
|
jamie@43
|
268
|
jamie@98
|
269 //plan =
|
jamie@98
|
270 // fftwf_plan_r2r_1d(N, (float *) data, result, FFTW_REDFT00, FFTW_ESTIMATE);
|
jamie@30
|
271
|
jamie@102
|
272 fftwf_execute_r2r(fft_plans.dct_plan, (float *)data, result);
|
jamie@98
|
273 //fftwf_execute(plan);
|
jamie@98
|
274 //fftwf_destroy_plan(plan);
|
jamie@38
|
275
|
jamie@56
|
276 return XTRACT_SUCCESS;
|
jamie@30
|
277 }
|
jamie@30
|
278
|
jamie@30
|
279 #else
|
jamie@30
|
280
|
jamie@67
|
281 int xtract_spectrum(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
282
|
danstowell@66
|
283 XTRACT_NEEDS_FFTW;
|
danstowell@66
|
284 return XTRACT_NO_RESULT;
|
jamie@30
|
285
|
jamie@30
|
286 }
|
jamie@30
|
287
|
jamie@43
|
288 int xtract_autocorrelation_fft(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
289
|
danstowell@66
|
290 XTRACT_NEEDS_FFTW;
|
danstowell@66
|
291 return XTRACT_NO_RESULT;
|
jamie@30
|
292
|
jamie@30
|
293 }
|
jamie@30
|
294
|
jamie@43
|
295 int xtract_mfcc(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
296
|
danstowell@66
|
297 XTRACT_NEEDS_FFTW;
|
danstowell@66
|
298 return XTRACT_NO_RESULT;
|
jamie@30
|
299
|
jamie@30
|
300 }
|
jamie@30
|
301
|
jamie@43
|
302 int xtract_dct(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
303
|
danstowell@66
|
304 XTRACT_NEEDS_FFTW;
|
danstowell@66
|
305 return XTRACT_NO_RESULT;
|
jamie@30
|
306
|
jamie@30
|
307 }
|
jamie@30
|
308
|
jamie@30
|
309 #endif
|
jamie@30
|
310
|
jamie@43
|
311 int xtract_autocorrelation(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
312
|
jamie@30
|
313 /* Naive time domain implementation */
|
jamie@30
|
314
|
jamie@30
|
315 int n = N, i;
|
jamie@30
|
316
|
jamie@30
|
317 float corr;
|
jamie@30
|
318
|
jamie@30
|
319 while(n--){
|
jamie@30
|
320 corr = 0;
|
jamie@30
|
321 for(i = 0; i < N - n; i++){
|
jamie@30
|
322 corr += data[i] * data[i + n];
|
jamie@30
|
323 }
|
jamie@30
|
324 result[n] = corr / N;
|
jamie@30
|
325 }
|
jamie@38
|
326
|
jamie@56
|
327 return XTRACT_SUCCESS;
|
jamie@30
|
328 }
|
jamie@30
|
329
|
jamie@43
|
330 int xtract_amdf(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
331
|
jamie@1
|
332 int n = N, i;
|
jamie@1
|
333
|
jamie@6
|
334 float md, temp;
|
jamie@1
|
335
|
jamie@1
|
336 while(n--){
|
jamie@1
|
337 md = 0;
|
jamie@1
|
338 for(i = 0; i < N - n; i++){
|
jamie@6
|
339 temp = data[i] - data[i + n];
|
jamie@6
|
340 temp = (temp < 0 ? -temp : temp);
|
jamie@6
|
341 md += temp;
|
jamie@1
|
342 }
|
jamie@1
|
343 result[n] = md / N;
|
jamie@1
|
344 }
|
jamie@38
|
345
|
jamie@56
|
346 return XTRACT_SUCCESS;
|
jamie@1
|
347 }
|
jamie@1
|
348
|
jamie@43
|
349 int xtract_asdf(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
350
|
jamie@1
|
351 int n = N, i;
|
jamie@1
|
352
|
jamie@1
|
353 float sd;
|
jamie@1
|
354
|
jamie@1
|
355 while(n--){
|
jamie@1
|
356 sd = 0;
|
jamie@1
|
357 for(i = 0; i < N - n; i++){
|
jamie@6
|
358 /*sd = 1;*/
|
jamie@56
|
359 sd += XTRACT_SQ(data[i] - data[i + n]);
|
jamie@1
|
360 }
|
jamie@1
|
361 result[n] = sd / N;
|
jamie@1
|
362 }
|
jamie@38
|
363
|
jamie@56
|
364 return XTRACT_SUCCESS;
|
jamie@1
|
365 }
|
jamie@1
|
366
|
jamie@43
|
367 int xtract_bark_coefficients(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
368
|
jamie@1
|
369 int *limits, band, n;
|
jamie@1
|
370
|
jamie@1
|
371 limits = (int *)argv;
|
jamie@1
|
372
|
jamie@59
|
373 for(band = 0; band < XTRACT_BARK_BANDS - 1; band++){
|
jamie@110
|
374 result[band] = 0.f;
|
jamie@1
|
375 for(n = limits[band]; n < limits[band + 1]; n++)
|
jamie@1
|
376 result[band] += data[n];
|
jamie@1
|
377 }
|
jamie@38
|
378
|
jamie@56
|
379 return XTRACT_SUCCESS;
|
jamie@1
|
380 }
|
jamie@1
|
381
|
jamie@52
|
382 int xtract_peak_spectrum(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
383
|
jamie@56
|
384 float threshold, max, y, y2, y3, p, q, *input = NULL;
|
jamie@43
|
385 size_t bytes;
|
jamie@59
|
386 int n = N, rv = XTRACT_SUCCESS;
|
jamie@49
|
387
|
jamie@56
|
388 threshold = max = y = y2 = y3 = p = q = 0.f;
|
jamie@1
|
389
|
jamie@1
|
390 if(argv != NULL){
|
jamie@56
|
391 q = ((float *)argv)[0];
|
jamie@55
|
392 threshold = ((float *)argv)[1];
|
jamie@1
|
393 }
|
jamie@49
|
394 else
|
jamie@56
|
395 rv = XTRACT_BAD_ARGV;
|
jamie@49
|
396
|
jamie@55
|
397 if(threshold < 0 || threshold > 100){
|
jamie@55
|
398 threshold = 0;
|
jamie@56
|
399 rv = XTRACT_BAD_ARGV;
|
jamie@1
|
400 }
|
jamie@1
|
401
|
jamie@56
|
402 XTRACT_CHECK_q;
|
jamie@49
|
403
|
jamie@98
|
404 input = (float *)calloc(N, sizeof(float));
|
jamie@98
|
405
|
jamie@98
|
406 bytes = N * sizeof(float);
|
jamie@43
|
407
|
jamie@43
|
408 if(input != NULL)
|
jamie@43
|
409 input = memcpy(input, data, bytes);
|
jamie@43
|
410 else
|
jamie@56
|
411 return XTRACT_MALLOC_FAILED;
|
jamie@43
|
412
|
jamie@45
|
413 while(n--)
|
jamie@56
|
414 max = XTRACT_MAX(max, input[n]);
|
jamie@1
|
415
|
jamie@55
|
416 threshold *= .01 * max;
|
jamie@1
|
417
|
jamie@1
|
418 result[0] = 0;
|
jamie@59
|
419 result[N] = 0;
|
jamie@1
|
420
|
jamie@59
|
421 for(n = 1; n < N; n++){
|
jamie@55
|
422 if(input[n] >= threshold){
|
jamie@43
|
423 if(input[n] > input[n - 1] && input[n] > input[n + 1]){
|
jamie@59
|
424 result[N + n] = q * (n + (p = .5 * (y = input[n-1] -
|
jamie@52
|
425 (y3 = input[n+1])) / (input[n - 1] - 2 *
|
jamie@52
|
426 (y2 = input[n]) + input[n + 1])));
|
jamie@52
|
427 result[n] = y2 - .25 * (y - y3) * p;
|
jamie@1
|
428 }
|
jamie@1
|
429 else{
|
jamie@1
|
430 result[n] = 0;
|
jamie@59
|
431 result[N + n] = 0;
|
jamie@1
|
432 }
|
jamie@1
|
433 }
|
jamie@1
|
434 else{
|
jamie@1
|
435 result[n] = 0;
|
jamie@59
|
436 result[N + n] = 0;
|
jamie@1
|
437 }
|
jamie@1
|
438 }
|
jamie@1
|
439
|
jamie@43
|
440 free(input);
|
jamie@56
|
441 return (rv ? rv : XTRACT_SUCCESS);
|
jamie@1
|
442 }
|
jamie@41
|
443
|
jamie@52
|
444 int xtract_harmonic_spectrum(const float *data, const int N, const void *argv, float *result){
|
jamie@38
|
445
|
jamie@38
|
446 int n = (N >> 1), M = n;
|
jamie@38
|
447
|
jamie@43
|
448 const float *freqs, *amps;
|
jamie@55
|
449 float f0, threshold, ratio, nearest, distance;
|
jamie@38
|
450
|
jamie@52
|
451 amps = data;
|
jamie@52
|
452 freqs = data + n;
|
jamie@38
|
453 f0 = *((float *)argv);
|
jamie@55
|
454 threshold = *((float *)argv+1);
|
jamie@38
|
455
|
jamie@38
|
456 ratio = nearest = distance = 0.f;
|
jamie@38
|
457
|
jamie@38
|
458 while(n--){
|
jamie@38
|
459 if(freqs[n]){
|
jamie@38
|
460 ratio = freqs[n] / f0;
|
jamie@85
|
461 nearest = roundf(ratio);
|
jamie@38
|
462 distance = fabs(nearest - ratio);
|
jamie@55
|
463 if(distance > threshold)
|
jamie@38
|
464 result[n] = result[M + n] = 0.f;
|
jamie@42
|
465 else {
|
jamie@52
|
466 result[n] = amps[n];
|
jamie@52
|
467 result[M + n] = freqs[n];
|
jamie@42
|
468 }
|
jamie@38
|
469 }
|
jamie@38
|
470 else
|
jamie@38
|
471 result[n] = result[M + n] = 0.f;
|
jamie@38
|
472 }
|
jamie@56
|
473 return XTRACT_SUCCESS;
|
jamie@38
|
474 }
|
jamie@38
|
475
|
jamie@104
|
476 int xtract_lpc(const float *data, const int N, const void *argv, float *result){
|
jamie@104
|
477
|
jamie@104
|
478 int i, j, k, M, L;
|
jamie@104
|
479 float r = 0.f,
|
jamie@104
|
480 error = 0.f;
|
jamie@104
|
481
|
jamie@104
|
482 float *ref = NULL,
|
jamie@104
|
483 *lpc = NULL ;
|
jamie@104
|
484
|
jamie@104
|
485 error = data[0];
|
jamie@104
|
486 k = N; /* The length of *data */
|
jamie@104
|
487 L = N - 1; /* The number of LPC coefficients */
|
jamie@104
|
488 M = L * 2; /* The length of *result */
|
jamie@104
|
489 ref = result;
|
jamie@104
|
490 lpc = result+L;
|
jamie@104
|
491
|
jamie@104
|
492 if(error == 0.0){
|
jamie@104
|
493 for(i = 0; i < M; i++)
|
jamie@104
|
494 result[i] = 0.f;
|
jamie@104
|
495 return XTRACT_NO_RESULT;
|
jamie@104
|
496 }
|
jamie@104
|
497
|
jamie@104
|
498 memset(result, 0, M * sizeof(float));
|
jamie@104
|
499
|
jamie@104
|
500 for (i = 0; i < L; i++) {
|
jamie@104
|
501
|
jamie@104
|
502 /* Sum up this iteration's reflection coefficient. */
|
jamie@104
|
503 r = -data[i + 1];
|
jamie@104
|
504 for (j = 0; j < i; j++)
|
jamie@104
|
505 r -= lpc[j] * data[i - j];
|
jamie@104
|
506 ref[i] = r /= error;
|
jamie@104
|
507
|
jamie@104
|
508 /* Update LPC coefficients and total error. */
|
jamie@104
|
509 lpc[i] = r;
|
jamie@104
|
510 for (j = 0; j < i / 2; j++) {
|
jamie@104
|
511 float tmp = lpc[j];
|
jamie@104
|
512 lpc[j] = r * lpc[i - 1 - j];
|
jamie@104
|
513 lpc[i - 1 - j] += r * tmp;
|
jamie@104
|
514 }
|
jamie@104
|
515 if (i % 2) lpc[j] += lpc[j] * r;
|
jamie@104
|
516
|
jamie@104
|
517 error *= 1 - r * r;
|
jamie@104
|
518 }
|
jamie@104
|
519
|
jamie@104
|
520 return XTRACT_SUCCESS;
|
jamie@104
|
521 }
|
jamie@104
|
522
|
jamie@104
|
523 int xtract_lpcc(const float *data, const int N, const void *argv, float *result){
|
jamie@104
|
524
|
jamie@104
|
525 /* Given N lpc coefficients extract an LPC cepstrum of size argv[0] */
|
jamie@104
|
526 /* Based on an an algorithm by rabiner and Juang */
|
jamie@104
|
527
|
jamie@104
|
528 int n, k;
|
jamie@104
|
529 float sum;
|
jamie@104
|
530 int order = N - 1; /* Eventually change this to Q = 3/2 p as suggested in Rabiner */
|
jamie@104
|
531 int cep_length;
|
jamie@104
|
532
|
jamie@104
|
533 if(argv == NULL)
|
jamie@104
|
534 cep_length = N - 1;
|
jamie@104
|
535 else
|
jamie@104
|
536 cep_length = (int)((float *)argv)[0];
|
jamie@104
|
537
|
jamie@104
|
538 memset(result, 0, cep_length * sizeof(float));
|
jamie@104
|
539
|
jamie@104
|
540 for (n = 1; n <= order && n <= cep_length; n++){
|
jamie@104
|
541 sum = 0.f;
|
jamie@104
|
542 for (k = 1; k < n; k++)
|
jamie@104
|
543 sum += k * result[k-1] * data[n - k];
|
jamie@104
|
544 result[n-1] = data[n] + sum / n;
|
jamie@104
|
545 }
|
jamie@104
|
546
|
jamie@104
|
547 /* be wary of these interpolated values */
|
jamie@104
|
548 for(n = order + 1; n <= cep_length; n++){
|
jamie@104
|
549 sum = 0.f;
|
jamie@104
|
550 for (k = n - (order - 1); k < n; k++)
|
jamie@104
|
551 sum += k * result[k-1] * data[n - k];
|
jamie@104
|
552 result[n-1] = sum / n;
|
jamie@104
|
553 }
|
jamie@104
|
554
|
jamie@104
|
555 return XTRACT_SUCCESS;
|
jamie@104
|
556
|
jamie@104
|
557 }
|
jamie@104
|
558 //int xtract_lpcc_s(const float *data, const int N, const void *argv, float *result){
|
jamie@104
|
559 // return XTRACT_SUCCESS;
|
jamie@104
|
560 //}
|
jamie@104
|
561
|
jamie@104
|
562
|