jamie@1
|
1 /* libxtract feature extraction library
|
jamie@1
|
2 *
|
jamie@1
|
3 * Copyright (C) 2006 Jamie Bullock
|
jamie@1
|
4 *
|
jamie@1
|
5 * This program is free software; you can redistribute it and/or modify
|
jamie@1
|
6 * it under the terms of the GNU General Public License as published by
|
jamie@1
|
7 * the Free Software Foundation; either version 2 of the License, or
|
jamie@1
|
8 * (at your option) any later version.
|
jamie@1
|
9 *
|
jamie@1
|
10 * This program is distributed in the hope that it will be useful,
|
jamie@1
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
jamie@1
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
jamie@1
|
13 * GNU General Public License for more details.
|
jamie@1
|
14 *
|
jamie@1
|
15 * You should have received a copy of the GNU General Public License
|
jamie@1
|
16 * along with this program; if not, write to the Free Software
|
jamie@1
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
|
jamie@1
|
18 * USA.
|
jamie@1
|
19 */
|
jamie@1
|
20
|
jamie@1
|
21
|
jamie@1
|
22 /* xtract_vector.c: defines functions that extract a feature as a single value from an input vector */
|
jamie@1
|
23
|
jamie@1
|
24 #include <math.h>
|
jamie@43
|
25 #include <string.h>
|
jamie@43
|
26 #include <stdlib.h>
|
jamie@30
|
27
|
jamie@98
|
28 #include "xtract/libxtract.h"
|
jamie@98
|
29 #include "xtract_macros_private.h"
|
jamie@98
|
30
|
jamie@85
|
31 #ifndef roundf
|
jamie@85
|
32 float roundf(float f){
|
jamie@85
|
33 if (f - (int)f >= 0.5)
|
jamie@85
|
34 return (float)((int)f + 1);
|
jamie@85
|
35 else
|
jamie@85
|
36 return (float)((int)f);
|
jamie@85
|
37 }
|
jamie@85
|
38 #endif
|
jamie@85
|
39
|
jamie@113
|
40 #ifndef powf
|
jamie@113
|
41 #define powf pow
|
jamie@113
|
42 #endif
|
jamie@113
|
43
|
jamie@113
|
44 #ifndef expf
|
jamie@113
|
45 #define expf exp
|
jamie@113
|
46 #endif
|
jamie@113
|
47
|
jamie@113
|
48 #ifndef sqrtf
|
jamie@113
|
49 #define sqrtf sqrt
|
jamie@113
|
50 #endif
|
jamie@113
|
51
|
jamie@113
|
52 #ifndef fabsf
|
jamie@113
|
53 #define fabsf fabs
|
jamie@113
|
54 #endif
|
jamie@113
|
55
|
jamie@30
|
56 #ifdef XTRACT_FFT
|
jamie@30
|
57
|
jamie@1
|
58 #include <fftw3.h>
|
jamie@98
|
59 #include "xtract_globals_private.h"
|
jamie@98
|
60 #include "xtract_macros_private.h"
|
jamie@1
|
61
|
jamie@54
|
62 int xtract_spectrum(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
63
|
jamie@113
|
64 float *input, *rfft, q, temp, max, NxN;
|
jamie@43
|
65 size_t bytes;
|
jamie@111
|
66 int n,
|
jamie@111
|
67 m,
|
jamie@105
|
68 M,
|
jamie@105
|
69 vector,
|
jamie@105
|
70 withDC,
|
jamie@105
|
71 argc,
|
jamie@105
|
72 normalise;
|
jamie@98
|
73
|
jamie@105
|
74 vector = argc = withDC = normalise = 0;
|
jamie@1
|
75
|
jamie@54
|
76 M = N >> 1;
|
jamie@56
|
77 NxN = XTRACT_SQ(N);
|
jamie@54
|
78
|
jamie@54
|
79 rfft = (float *)fftwf_malloc(N * sizeof(float));
|
jamie@43
|
80 input = (float *)malloc(bytes = N * sizeof(float));
|
jamie@43
|
81 input = memcpy(input, data, bytes);
|
jamie@1
|
82
|
jamie@56
|
83 q = *(float *)argv;
|
jamie@54
|
84 vector = (int)*((float *)argv+1);
|
jamie@70
|
85 withDC = (int)*((float *)argv+2);
|
jamie@105
|
86 normalise = (int)*((float *)argv+3);
|
jamie@105
|
87
|
jamie@105
|
88 temp = 0.f;
|
jamie@105
|
89 max = 0.f;
|
jamie@46
|
90
|
jamie@56
|
91 XTRACT_CHECK_q;
|
jamie@46
|
92
|
jamie@102
|
93 if(fft_plans.spectrum_plan == NULL){
|
jamie@98
|
94 fprintf(stderr,
|
jamie@98
|
95 "libxtract: Error: xtract_spectrum() has uninitialised plan\n");
|
jamie@98
|
96 return XTRACT_NO_RESULT;
|
jamie@98
|
97 }
|
jamie@98
|
98
|
jamie@102
|
99 fftwf_execute_r2r(fft_plans.spectrum_plan, input, rfft);
|
jamie@54
|
100
|
jamie@54
|
101 switch(vector){
|
jamie@67
|
102
|
jamie@56
|
103 case XTRACT_LOG_MAGNITUDE_SPECTRUM:
|
jamie@67
|
104 for(n = 1; n < M; n++){
|
jamie@67
|
105 if ((temp = XTRACT_SQ(rfft[n]) +
|
jamie@70
|
106 XTRACT_SQ(rfft[N - n])) > XTRACT_LOG_LIMIT)
|
jamie@113
|
107 temp = logf(sqrtf(temp) / (float)N);
|
jamie@54
|
108 else
|
jamie@56
|
109 temp = XTRACT_LOG_LIMIT_DB;
|
jamie@111
|
110
|
jamie@111
|
111 if(withDC){
|
jamie@111
|
112 m = n;
|
jamie@111
|
113 result[M + m + 1] = n * q;
|
jamie@111
|
114 }
|
jamie@111
|
115 else{
|
jamie@111
|
116 m = n - 1;
|
jamie@111
|
117 result[M + m] = n * q;
|
jamie@111
|
118 }
|
jamie@111
|
119
|
jamie@111
|
120 result[m] =
|
jamie@111
|
121 /* Scaling */
|
jamie@111
|
122 (temp + XTRACT_DB_SCALE_OFFSET) /
|
jamie@111
|
123 XTRACT_DB_SCALE_OFFSET;
|
jamie@111
|
124
|
jamie@111
|
125 max = result[m] > max ? result[m] : max;
|
jamie@54
|
126 }
|
jamie@54
|
127 break;
|
jamie@67
|
128
|
jamie@56
|
129 case XTRACT_POWER_SPECTRUM:
|
jamie@67
|
130 for(n = 1; n < M; n++){
|
jamie@111
|
131 if(withDC){
|
jamie@111
|
132 m = n;
|
jamie@111
|
133 result[M + m + 1] = n * q;
|
jamie@111
|
134 }
|
jamie@111
|
135 else{
|
jamie@111
|
136 m = n - 1;
|
jamie@111
|
137 result[M + m] = n * q;
|
jamie@111
|
138 }
|
jamie@111
|
139 result[m] = (XTRACT_SQ(rfft[n]) + XTRACT_SQ(rfft[N - n])) / NxN;
|
jamie@111
|
140 max = result[m] > max ? result[m] : max;
|
jamie@54
|
141 }
|
jamie@54
|
142 break;
|
jamie@67
|
143
|
jamie@56
|
144 case XTRACT_LOG_POWER_SPECTRUM:
|
jamie@67
|
145 for(n = 1; n < M; n++){
|
jamie@70
|
146 if ((temp = XTRACT_SQ(rfft[n]) + XTRACT_SQ(rfft[N - n])) >
|
jamie@67
|
147 XTRACT_LOG_LIMIT)
|
jamie@113
|
148 temp = logf(temp / NxN);
|
jamie@54
|
149 else
|
jamie@56
|
150 temp = XTRACT_LOG_LIMIT_DB;
|
jamie@111
|
151
|
jamie@111
|
152 if(withDC){
|
jamie@111
|
153 m = n;
|
jamie@111
|
154 result[M + m + 1] = n * q;
|
jamie@111
|
155 }
|
jamie@111
|
156 else{
|
jamie@111
|
157 m = n - 1;
|
jamie@111
|
158 result[M + m] = n * q;
|
jamie@111
|
159 }
|
jamie@111
|
160
|
jamie@111
|
161 result[m] = (temp + XTRACT_DB_SCALE_OFFSET) /
|
jamie@70
|
162 XTRACT_DB_SCALE_OFFSET;
|
jamie@111
|
163 max = result[m] > max ? result[m] : max;
|
jamie@54
|
164 }
|
jamie@54
|
165 break;
|
jamie@67
|
166
|
jamie@54
|
167 default:
|
jamie@54
|
168 /* MAGNITUDE_SPECTRUM */
|
jamie@67
|
169 for(n = 1; n < M; n++){
|
jamie@111
|
170 if(withDC){
|
jamie@111
|
171 m = n;
|
jamie@111
|
172 result[M + m + 1] = n * q;
|
jamie@111
|
173 }
|
jamie@111
|
174 else{
|
jamie@111
|
175 m = n - 1;
|
jamie@111
|
176 result[M + m] = n * q;
|
jamie@111
|
177 }
|
jamie@111
|
178
|
jamie@113
|
179 result[m] = sqrtf(XTRACT_SQ(rfft[n]) +
|
jamie@113
|
180 XTRACT_SQ(rfft[N - n])) / (float)N;
|
jamie@111
|
181 max = result[m] > max ? result[m] : max;
|
jamie@54
|
182 }
|
jamie@54
|
183 break;
|
jamie@1
|
184 }
|
jamie@1
|
185
|
jamie@70
|
186 if(withDC){
|
jamie@70
|
187 /* The DC component */
|
jamie@70
|
188 result[0] = XTRACT_SQ(rfft[0]);
|
jamie@70
|
189 result[M + 1] = 0.f;
|
jamie@105
|
190 max = result[0] > max ? result[0] : max;
|
jamie@70
|
191 /* The Nyquist */
|
jamie@70
|
192 result[M] = XTRACT_SQ(rfft[M]);
|
jamie@70
|
193 result[N + 1] = q * M;
|
jamie@105
|
194 max = result[M] > max ? result[M] : max;
|
jamie@70
|
195 }
|
jamie@70
|
196 else {
|
jamie@70
|
197 /* The Nyquist */
|
jamie@98
|
198 result[M - 1] = (float)XTRACT_SQ(rfft[M]);
|
jamie@70
|
199 result[N - 1] = q * M;
|
jamie@105
|
200 max = result[M - 1] > max ? result[M - 1] : max;
|
jamie@70
|
201 }
|
jamie@105
|
202
|
jamie@105
|
203 if(normalise){
|
jamie@105
|
204 for(n = 0; n < M; n++)
|
jamie@105
|
205 result[n] /= max;
|
jamie@105
|
206 }
|
jamie@105
|
207
|
jamie@54
|
208 fftwf_free(rfft);
|
jamie@43
|
209 free(input);
|
jamie@1
|
210
|
jamie@56
|
211 return XTRACT_SUCCESS;
|
jamie@1
|
212 }
|
jamie@1
|
213
|
jamie@43
|
214 int xtract_autocorrelation_fft(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
215
|
jamie@75
|
216 float *freq, *time;
|
jamie@75
|
217 int n, M;
|
jamie@98
|
218 //fftwf_plan plan;
|
jamie@1
|
219
|
jamie@75
|
220 M = N << 1;
|
jamie@43
|
221
|
jamie@75
|
222 freq = (float *)fftwf_malloc(M * sizeof(float));
|
jamie@75
|
223 /* Zero pad the input vector */
|
jamie@75
|
224 time = (float *)calloc(M, sizeof(float));
|
jamie@75
|
225 time = memcpy(time, data, N * sizeof(float));
|
jamie@75
|
226
|
jamie@102
|
227 fftwf_execute_r2r(fft_plans.autocorrelation_fft_plan_1, time, freq);
|
jamie@98
|
228 //plan = fftwf_plan_r2r_1d(M, time, freq, FFTW_R2HC, FFTW_ESTIMATE);
|
jamie@1
|
229
|
jamie@98
|
230 //fftwf_execute(plan);
|
jamie@75
|
231
|
jamie@76
|
232 for(n = 1; n < N; n++){
|
jamie@75
|
233 freq[n] = XTRACT_SQ(freq[n]) + XTRACT_SQ(freq[M - n]);
|
jamie@75
|
234 freq[M - n] = 0.f;
|
jamie@75
|
235 }
|
jamie@1
|
236
|
jamie@75
|
237 freq[0] = XTRACT_SQ(freq[0]);
|
jamie@75
|
238 freq[N] = XTRACT_SQ(freq[N]);
|
jamie@75
|
239
|
jamie@98
|
240 //plan = fftwf_plan_r2r_1d(M, freq, time, FFTW_HC2R, FFTW_ESTIMATE);
|
jamie@75
|
241
|
jamie@98
|
242 //fftwf_execute(plan);
|
jamie@98
|
243
|
jamie@102
|
244 fftwf_execute_r2r(fft_plans.autocorrelation_fft_plan_2, freq, time);
|
jamie@75
|
245
|
jamie@75
|
246 /* Normalisation factor */
|
jamie@75
|
247 M = M * N;
|
jamie@75
|
248
|
jamie@75
|
249 for(n = 0; n < N; n++)
|
jamie@75
|
250 result[n] = time[n] / (float)M;
|
jamie@75
|
251 /* result[n] = time[n+1] / (float)M; */
|
jamie@75
|
252
|
jamie@98
|
253 //fftwf_destroy_plan(plan);
|
jamie@75
|
254 fftwf_free(freq);
|
jamie@75
|
255 free(time);
|
jamie@38
|
256
|
jamie@56
|
257 return XTRACT_SUCCESS;
|
jamie@1
|
258 }
|
jamie@1
|
259
|
jamie@43
|
260 int xtract_mfcc(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
261
|
jamie@30
|
262 xtract_mel_filter *f;
|
jamie@30
|
263 int n, filter;
|
jamie@30
|
264
|
jamie@30
|
265 f = (xtract_mel_filter *)argv;
|
jamie@39
|
266
|
jamie@30
|
267 for(filter = 0; filter < f->n_filters; filter++){
|
danstowell@68
|
268 result[filter] = 0.f;
|
jamie@30
|
269 for(n = 0; n < N; n++){
|
jamie@71
|
270 result[filter] += data[n] * f->filters[filter][n];
|
jamie@30
|
271 }
|
jamie@113
|
272 result[filter] = logf(result[filter] < XTRACT_LOG_LIMIT ? XTRACT_LOG_LIMIT : result[filter]);
|
jamie@30
|
273 }
|
jamie@30
|
274
|
jamie@30
|
275 xtract_dct(result, f->n_filters, NULL, result);
|
jamie@43
|
276
|
jamie@56
|
277 return XTRACT_SUCCESS;
|
jamie@30
|
278 }
|
jamie@30
|
279
|
jamie@43
|
280 int xtract_dct(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
281
|
jamie@98
|
282 //fftwf_plan plan;
|
jamie@43
|
283
|
jamie@98
|
284 //plan =
|
jamie@98
|
285 // fftwf_plan_r2r_1d(N, (float *) data, result, FFTW_REDFT00, FFTW_ESTIMATE);
|
jamie@30
|
286
|
jamie@102
|
287 fftwf_execute_r2r(fft_plans.dct_plan, (float *)data, result);
|
jamie@98
|
288 //fftwf_execute(plan);
|
jamie@98
|
289 //fftwf_destroy_plan(plan);
|
jamie@38
|
290
|
jamie@56
|
291 return XTRACT_SUCCESS;
|
jamie@30
|
292 }
|
jamie@30
|
293
|
jamie@30
|
294 #else
|
jamie@30
|
295
|
jamie@67
|
296 int xtract_spectrum(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
297
|
danstowell@66
|
298 XTRACT_NEEDS_FFTW;
|
danstowell@66
|
299 return XTRACT_NO_RESULT;
|
jamie@30
|
300
|
jamie@30
|
301 }
|
jamie@30
|
302
|
jamie@43
|
303 int xtract_autocorrelation_fft(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
304
|
danstowell@66
|
305 XTRACT_NEEDS_FFTW;
|
danstowell@66
|
306 return XTRACT_NO_RESULT;
|
jamie@30
|
307
|
jamie@30
|
308 }
|
jamie@30
|
309
|
jamie@43
|
310 int xtract_mfcc(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
311
|
danstowell@66
|
312 XTRACT_NEEDS_FFTW;
|
danstowell@66
|
313 return XTRACT_NO_RESULT;
|
jamie@30
|
314
|
jamie@30
|
315 }
|
jamie@30
|
316
|
jamie@43
|
317 int xtract_dct(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
318
|
danstowell@66
|
319 XTRACT_NEEDS_FFTW;
|
danstowell@66
|
320 return XTRACT_NO_RESULT;
|
jamie@30
|
321
|
jamie@30
|
322 }
|
jamie@30
|
323
|
jamie@30
|
324 #endif
|
jamie@30
|
325
|
jamie@43
|
326 int xtract_autocorrelation(const float *data, const int N, const void *argv, float *result){
|
jamie@30
|
327
|
jamie@30
|
328 /* Naive time domain implementation */
|
jamie@30
|
329
|
jamie@30
|
330 int n = N, i;
|
jamie@30
|
331
|
jamie@30
|
332 float corr;
|
jamie@30
|
333
|
jamie@30
|
334 while(n--){
|
jamie@30
|
335 corr = 0;
|
jamie@30
|
336 for(i = 0; i < N - n; i++){
|
jamie@30
|
337 corr += data[i] * data[i + n];
|
jamie@30
|
338 }
|
jamie@30
|
339 result[n] = corr / N;
|
jamie@30
|
340 }
|
jamie@38
|
341
|
jamie@56
|
342 return XTRACT_SUCCESS;
|
jamie@30
|
343 }
|
jamie@30
|
344
|
jamie@43
|
345 int xtract_amdf(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
346
|
jamie@1
|
347 int n = N, i;
|
jamie@1
|
348
|
jamie@6
|
349 float md, temp;
|
jamie@1
|
350
|
jamie@1
|
351 while(n--){
|
jamie@113
|
352 md = 0.f;
|
jamie@1
|
353 for(i = 0; i < N - n; i++){
|
jamie@6
|
354 temp = data[i] - data[i + n];
|
jamie@6
|
355 temp = (temp < 0 ? -temp : temp);
|
jamie@6
|
356 md += temp;
|
jamie@1
|
357 }
|
jamie@113
|
358 result[n] = md / (float)N;
|
jamie@1
|
359 }
|
jamie@38
|
360
|
jamie@56
|
361 return XTRACT_SUCCESS;
|
jamie@1
|
362 }
|
jamie@1
|
363
|
jamie@43
|
364 int xtract_asdf(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
365
|
jamie@1
|
366 int n = N, i;
|
jamie@1
|
367
|
jamie@1
|
368 float sd;
|
jamie@1
|
369
|
jamie@1
|
370 while(n--){
|
jamie@113
|
371 sd = 0.f;
|
jamie@1
|
372 for(i = 0; i < N - n; i++){
|
jamie@6
|
373 /*sd = 1;*/
|
jamie@56
|
374 sd += XTRACT_SQ(data[i] - data[i + n]);
|
jamie@1
|
375 }
|
jamie@113
|
376 result[n] = sd / (float)N;
|
jamie@1
|
377 }
|
jamie@38
|
378
|
jamie@56
|
379 return XTRACT_SUCCESS;
|
jamie@1
|
380 }
|
jamie@1
|
381
|
jamie@43
|
382 int xtract_bark_coefficients(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
383
|
jamie@1
|
384 int *limits, band, n;
|
jamie@1
|
385
|
jamie@1
|
386 limits = (int *)argv;
|
jamie@1
|
387
|
jamie@59
|
388 for(band = 0; band < XTRACT_BARK_BANDS - 1; band++){
|
jamie@110
|
389 result[band] = 0.f;
|
jamie@1
|
390 for(n = limits[band]; n < limits[band + 1]; n++)
|
jamie@1
|
391 result[band] += data[n];
|
jamie@1
|
392 }
|
jamie@38
|
393
|
jamie@56
|
394 return XTRACT_SUCCESS;
|
jamie@1
|
395 }
|
jamie@1
|
396
|
jamie@52
|
397 int xtract_peak_spectrum(const float *data, const int N, const void *argv, float *result){
|
jamie@1
|
398
|
jamie@56
|
399 float threshold, max, y, y2, y3, p, q, *input = NULL;
|
jamie@43
|
400 size_t bytes;
|
jamie@59
|
401 int n = N, rv = XTRACT_SUCCESS;
|
jamie@49
|
402
|
jamie@56
|
403 threshold = max = y = y2 = y3 = p = q = 0.f;
|
jamie@1
|
404
|
jamie@1
|
405 if(argv != NULL){
|
jamie@56
|
406 q = ((float *)argv)[0];
|
jamie@55
|
407 threshold = ((float *)argv)[1];
|
jamie@1
|
408 }
|
jamie@49
|
409 else
|
jamie@56
|
410 rv = XTRACT_BAD_ARGV;
|
jamie@49
|
411
|
jamie@55
|
412 if(threshold < 0 || threshold > 100){
|
jamie@55
|
413 threshold = 0;
|
jamie@56
|
414 rv = XTRACT_BAD_ARGV;
|
jamie@1
|
415 }
|
jamie@1
|
416
|
jamie@56
|
417 XTRACT_CHECK_q;
|
jamie@49
|
418
|
jamie@98
|
419 input = (float *)calloc(N, sizeof(float));
|
jamie@98
|
420
|
jamie@98
|
421 bytes = N * sizeof(float);
|
jamie@43
|
422
|
jamie@43
|
423 if(input != NULL)
|
jamie@43
|
424 input = memcpy(input, data, bytes);
|
jamie@43
|
425 else
|
jamie@56
|
426 return XTRACT_MALLOC_FAILED;
|
jamie@43
|
427
|
jamie@45
|
428 while(n--)
|
jamie@56
|
429 max = XTRACT_MAX(max, input[n]);
|
jamie@1
|
430
|
jamie@55
|
431 threshold *= .01 * max;
|
jamie@1
|
432
|
jamie@1
|
433 result[0] = 0;
|
jamie@59
|
434 result[N] = 0;
|
jamie@1
|
435
|
jamie@59
|
436 for(n = 1; n < N; n++){
|
jamie@55
|
437 if(input[n] >= threshold){
|
jamie@43
|
438 if(input[n] > input[n - 1] && input[n] > input[n + 1]){
|
jamie@59
|
439 result[N + n] = q * (n + (p = .5 * (y = input[n-1] -
|
jamie@52
|
440 (y3 = input[n+1])) / (input[n - 1] - 2 *
|
jamie@52
|
441 (y2 = input[n]) + input[n + 1])));
|
jamie@52
|
442 result[n] = y2 - .25 * (y - y3) * p;
|
jamie@1
|
443 }
|
jamie@1
|
444 else{
|
jamie@1
|
445 result[n] = 0;
|
jamie@59
|
446 result[N + n] = 0;
|
jamie@1
|
447 }
|
jamie@1
|
448 }
|
jamie@1
|
449 else{
|
jamie@1
|
450 result[n] = 0;
|
jamie@59
|
451 result[N + n] = 0;
|
jamie@1
|
452 }
|
jamie@1
|
453 }
|
jamie@1
|
454
|
jamie@43
|
455 free(input);
|
jamie@56
|
456 return (rv ? rv : XTRACT_SUCCESS);
|
jamie@1
|
457 }
|
jamie@41
|
458
|
jamie@52
|
459 int xtract_harmonic_spectrum(const float *data, const int N, const void *argv, float *result){
|
jamie@38
|
460
|
jamie@38
|
461 int n = (N >> 1), M = n;
|
jamie@38
|
462
|
jamie@43
|
463 const float *freqs, *amps;
|
jamie@55
|
464 float f0, threshold, ratio, nearest, distance;
|
jamie@38
|
465
|
jamie@52
|
466 amps = data;
|
jamie@52
|
467 freqs = data + n;
|
jamie@38
|
468 f0 = *((float *)argv);
|
jamie@55
|
469 threshold = *((float *)argv+1);
|
jamie@38
|
470
|
jamie@38
|
471 ratio = nearest = distance = 0.f;
|
jamie@38
|
472
|
jamie@38
|
473 while(n--){
|
jamie@38
|
474 if(freqs[n]){
|
jamie@38
|
475 ratio = freqs[n] / f0;
|
jamie@85
|
476 nearest = roundf(ratio);
|
jamie@38
|
477 distance = fabs(nearest - ratio);
|
jamie@55
|
478 if(distance > threshold)
|
jamie@38
|
479 result[n] = result[M + n] = 0.f;
|
jamie@42
|
480 else {
|
jamie@52
|
481 result[n] = amps[n];
|
jamie@52
|
482 result[M + n] = freqs[n];
|
jamie@42
|
483 }
|
jamie@38
|
484 }
|
jamie@38
|
485 else
|
jamie@38
|
486 result[n] = result[M + n] = 0.f;
|
jamie@38
|
487 }
|
jamie@56
|
488 return XTRACT_SUCCESS;
|
jamie@38
|
489 }
|
jamie@38
|
490
|
jamie@104
|
491 int xtract_lpc(const float *data, const int N, const void *argv, float *result){
|
jamie@104
|
492
|
jamie@104
|
493 int i, j, k, M, L;
|
jamie@104
|
494 float r = 0.f,
|
jamie@104
|
495 error = 0.f;
|
jamie@104
|
496
|
jamie@104
|
497 float *ref = NULL,
|
jamie@104
|
498 *lpc = NULL ;
|
jamie@104
|
499
|
jamie@104
|
500 error = data[0];
|
jamie@104
|
501 k = N; /* The length of *data */
|
jamie@104
|
502 L = N - 1; /* The number of LPC coefficients */
|
jamie@104
|
503 M = L * 2; /* The length of *result */
|
jamie@104
|
504 ref = result;
|
jamie@104
|
505 lpc = result+L;
|
jamie@113
|
506
|
jamie@104
|
507 if(error == 0.0){
|
jamie@113
|
508 memset(result, 0, M * sizeof(float));
|
jamie@104
|
509 return XTRACT_NO_RESULT;
|
jamie@104
|
510 }
|
jamie@113
|
511
|
jamie@104
|
512 memset(result, 0, M * sizeof(float));
|
jamie@104
|
513
|
jamie@104
|
514 for (i = 0; i < L; i++) {
|
jamie@104
|
515
|
jamie@104
|
516 /* Sum up this iteration's reflection coefficient. */
|
jamie@104
|
517 r = -data[i + 1];
|
jamie@104
|
518 for (j = 0; j < i; j++)
|
jamie@104
|
519 r -= lpc[j] * data[i - j];
|
jamie@104
|
520 ref[i] = r /= error;
|
jamie@104
|
521
|
jamie@104
|
522 /* Update LPC coefficients and total error. */
|
jamie@104
|
523 lpc[i] = r;
|
jamie@104
|
524 for (j = 0; j < i / 2; j++) {
|
jamie@104
|
525 float tmp = lpc[j];
|
jamie@104
|
526 lpc[j] = r * lpc[i - 1 - j];
|
jamie@104
|
527 lpc[i - 1 - j] += r * tmp;
|
jamie@104
|
528 }
|
jamie@104
|
529 if (i % 2) lpc[j] += lpc[j] * r;
|
jamie@104
|
530
|
jamie@104
|
531 error *= 1 - r * r;
|
jamie@104
|
532 }
|
jamie@104
|
533
|
jamie@104
|
534 return XTRACT_SUCCESS;
|
jamie@104
|
535 }
|
jamie@104
|
536
|
jamie@104
|
537 int xtract_lpcc(const float *data, const int N, const void *argv, float *result){
|
jamie@104
|
538
|
jamie@104
|
539 /* Given N lpc coefficients extract an LPC cepstrum of size argv[0] */
|
jamie@104
|
540 /* Based on an an algorithm by rabiner and Juang */
|
jamie@104
|
541
|
jamie@104
|
542 int n, k;
|
jamie@104
|
543 float sum;
|
jamie@104
|
544 int order = N - 1; /* Eventually change this to Q = 3/2 p as suggested in Rabiner */
|
jamie@104
|
545 int cep_length;
|
jamie@104
|
546
|
jamie@104
|
547 if(argv == NULL)
|
jamie@104
|
548 cep_length = N - 1;
|
jamie@104
|
549 else
|
jamie@104
|
550 cep_length = (int)((float *)argv)[0];
|
jamie@104
|
551
|
jamie@104
|
552 memset(result, 0, cep_length * sizeof(float));
|
jamie@104
|
553
|
jamie@104
|
554 for (n = 1; n <= order && n <= cep_length; n++){
|
jamie@104
|
555 sum = 0.f;
|
jamie@104
|
556 for (k = 1; k < n; k++)
|
jamie@104
|
557 sum += k * result[k-1] * data[n - k];
|
jamie@104
|
558 result[n-1] = data[n] + sum / n;
|
jamie@104
|
559 }
|
jamie@104
|
560
|
jamie@104
|
561 /* be wary of these interpolated values */
|
jamie@104
|
562 for(n = order + 1; n <= cep_length; n++){
|
jamie@104
|
563 sum = 0.f;
|
jamie@104
|
564 for (k = n - (order - 1); k < n; k++)
|
jamie@104
|
565 sum += k * result[k-1] * data[n - k];
|
jamie@104
|
566 result[n-1] = sum / n;
|
jamie@104
|
567 }
|
jamie@104
|
568
|
jamie@104
|
569 return XTRACT_SUCCESS;
|
jamie@104
|
570
|
jamie@104
|
571 }
|
jamie@104
|
572 //int xtract_lpcc_s(const float *data, const int N, const void *argv, float *result){
|
jamie@104
|
573 // return XTRACT_SUCCESS;
|
jamie@104
|
574 //}
|
jamie@104
|
575
|
jamie@114
|
576 int xtract_subbands(const float *data, const int N, const void *argv, float *result){
|
jamie@104
|
577
|
jamie@114
|
578 int n, bw, xtract_func, nbands, scale, start, lower, *argi, rv;
|
jamie@114
|
579
|
jamie@114
|
580 argi = (int *)argv;
|
jamie@114
|
581
|
jamie@114
|
582 xtract_func = argi[0];
|
jamie@114
|
583 nbands = argi[1];
|
jamie@114
|
584 scale = argi[2];
|
jamie@114
|
585 start = argi[3];
|
jamie@114
|
586
|
jamie@114
|
587
|
jamie@114
|
588 if(scale == XTRACT_LINEAR_SUBBANDS)
|
jamie@114
|
589 bw = floorf((N - start) / nbands);
|
jamie@114
|
590 else
|
jamie@114
|
591 bw = start;
|
jamie@114
|
592
|
jamie@114
|
593 lower = start;
|
jamie@114
|
594
|
jamie@114
|
595 for(n = 0; n < nbands; n++){
|
jamie@114
|
596
|
jamie@114
|
597 /* Bounds sanity check */
|
jamie@114
|
598 if(lower + bw >= N)
|
jamie@114
|
599 result[n] = 0.f
|
jamie@114
|
600 continue;
|
jamie@114
|
601
|
jamie@114
|
602 rv = xtract[xtract_func](data+lower, bw, NULL, &result[n]);
|
jamie@114
|
603
|
jamie@114
|
604 if(rv != XTRACT_SUCCESS)
|
jamie@114
|
605 return rv;
|
jamie@114
|
606
|
jamie@114
|
607 switch(scale){
|
jamie@114
|
608 case XTRACT_OCTAVE_SUBBANDS:
|
jamie@114
|
609 lower += bw;
|
jamie@114
|
610 bw = lower;
|
jamie@114
|
611 break;
|
jamie@114
|
612 case XTRACT_LINEAR_SUBBANDS:
|
jamie@114
|
613 lower += bw;
|
jamie@114
|
614 break;
|
jamie@114
|
615 }
|
jamie@114
|
616
|
jamie@114
|
617 }
|
jamie@114
|
618
|
jamie@114
|
619 return rv;
|
jamie@114
|
620
|
jamie@114
|
621 }
|
jamie@114
|
622
|
jamie@114
|
623
|
jamie@114
|
624
|