c@1
|
1
|
c@1
|
2 module cqtkernel;
|
c@1
|
3
|
c@3
|
4 vec = load may.vector;
|
c@3
|
5 complex = load may.complex;
|
c@3
|
6 window = load may.signal.window;
|
c@3
|
7 fft = load may.transform.fft;
|
c@6
|
8 cm = load may.matrix.complex;
|
c@3
|
9
|
c@2
|
10 { pow, round, floor, ceil, nextPowerOfTwo } = load may.mathmisc;
|
c@1
|
11
|
c@9
|
12 makeKernel { sampleRate, maxFreq, binsPerOctave } =
|
c@9
|
13 (q = 1;
|
c@9
|
14 atomHopFactor = 0.25;
|
c@9
|
15 thresh = 0.0005;
|
c@9
|
16 minFreq = (maxFreq/2) * (pow 2 (1/binsPerOctave));
|
c@9
|
17 bigQ = q / ((pow 2 (1/binsPerOctave)) - 1);
|
c@1
|
18
|
c@9
|
19 maxNK = round(bigQ * sampleRate / minFreq);
|
c@9
|
20 minNK = round(bigQ * sampleRate /
|
c@9
|
21 (minFreq * (pow 2 ((binsPerOctave-1) / binsPerOctave))));
|
c@1
|
22
|
c@9
|
23 atomHop = round(minNK * atomHopFactor);
|
c@9
|
24
|
c@9
|
25 firstCentre = atomHop * (ceil ((ceil (maxNK/2)) / atomHop));
|
c@9
|
26
|
c@9
|
27 fftSize = nextPowerOfTwo (firstCentre + ceil (maxNK/2));
|
c@9
|
28
|
c@16
|
29 eprintln "sampleRate = \(sampleRate), maxFreq = \(maxFreq), binsPerOctave = \(binsPerOctave), q = \(q), atomHopFactor = \(atomHopFactor), thresh = \(thresh)";
|
c@16
|
30 eprintln "minFreq = \(minFreq), bigQ = \(bigQ), maxNK = \(maxNK), minNK = \(minNK), atomHop = \(atomHop), firstCentre = \(firstCentre), fftSize = \(fftSize)";
|
c@9
|
31
|
c@9
|
32 winNr = floor((fftSize - ceil(maxNK/2) - firstCentre) / atomHop) + 1;
|
c@9
|
33
|
c@9
|
34 lastCentre = firstCentre + (winNr - 1) * atomHop;
|
c@9
|
35
|
c@9
|
36 fftHop = (lastCentre + atomHop) - firstCentre;
|
c@9
|
37
|
c@16
|
38 eprintln "winNr = \(winNr), lastCentre = \(lastCentre), fftHop = \(fftHop)";
|
c@9
|
39
|
c@9
|
40 fftFunc = fft.forward fftSize;
|
c@9
|
41
|
c@9
|
42 // Note the MATLAB uses exp(2*pi*1i*x) for a complex generating
|
c@9
|
43 // function. We can't do that here; we need to generate real and imag
|
c@9
|
44 // parts separately as real = cos(2*pi*x), imag = sin(2*pi*x).
|
c@9
|
45
|
c@40
|
46 binFrequencies = array [];
|
c@40
|
47
|
c@9
|
48 kernels = map do k:
|
c@9
|
49
|
c@9
|
50 nk = round(bigQ * sampleRate / (minFreq * (pow 2 ((k-1)/binsPerOctave))));
|
c@23
|
51
|
c@9
|
52 // the cq MATLAB toolbox uses a symmetric window for
|
c@9
|
53 // blackmanharris -- which is odd because it uses a periodic one
|
c@9
|
54 // for other types. Oh well
|
c@25
|
55 win = vec.divideBy nk
|
c@25
|
56 (vec.sqrt
|
c@9
|
57 (window.windowFunction (BlackmanHarris ()) [Symmetric true] nk));
|
c@23
|
58
|
c@9
|
59 fk = minFreq * (pow 2 ((k-1)/binsPerOctave));
|
c@23
|
60
|
c@40
|
61 push binFrequencies fk;
|
c@40
|
62
|
c@25
|
63 genKernel f = vec.multiply win
|
c@9
|
64 (vec.fromList
|
c@9
|
65 (map do i: f (2 * pi * fk * i / sampleRate) done [0..nk-1]));
|
c@9
|
66
|
c@9
|
67 reals = genKernel cos;
|
c@9
|
68 imags = genKernel sin;
|
c@9
|
69
|
c@9
|
70 atomOffset = firstCentre - ceil(nk/2);
|
c@9
|
71
|
c@9
|
72 map do i:
|
c@9
|
73
|
c@9
|
74 shift = vec.zeros (atomOffset + ((i-1) * atomHop));
|
c@9
|
75
|
c@9
|
76 specKernel = fftFunc
|
c@9
|
77 (complex.complexArray
|
c@9
|
78 (vec.concat [shift, reals])
|
c@9
|
79 (vec.concat [shift, imags]));
|
c@23
|
80
|
c@9
|
81 map do c:
|
c@9
|
82 if complex.magnitude c <= thresh then complex.zero else c fi
|
c@9
|
83 done specKernel;
|
c@23
|
84
|
c@9
|
85 done [1..winNr];
|
c@9
|
86
|
c@9
|
87 done [1..binsPerOctave];
|
c@9
|
88
|
c@9
|
89 kmat = cm.toSparse
|
c@9
|
90 (cm.scaled (1/fftSize)
|
c@9
|
91 (cm.newComplexMatrix (RowMajor()) (concat kernels)));
|
c@9
|
92
|
c@23
|
93 eprintln "density = \(cm.density kmat) (\(cm.nonZeroValues kmat) of \(cm.width kmat * cm.height kmat))";
|
c@9
|
94
|
c@9
|
95 // Normalisation
|
c@9
|
96
|
c@25
|
97 wx1 = vec.maxindex (complex.magnitudes (cm.getRow 0 kmat));
|
c@25
|
98 wx2 = vec.maxindex (complex.magnitudes (cm.getRow (cm.height kmat - 1) kmat));
|
c@27
|
99
|
c@9
|
100 subset = cm.columnSlice kmat wx1 (wx2+1);
|
c@9
|
101 square = cm.product (cm.conjugateTransposed subset) subset;
|
c@27
|
102
|
c@9
|
103 diag = complex.magnitudes (cm.getDiagonal 0 square);
|
c@9
|
104 wK = vec.slice diag (round(1/q)) (vec.length diag - round(1/q) - 2);
|
c@27
|
105
|
c@25
|
106 weight = (fftHop / fftSize) / (vec.mean (vec.abs wK));
|
c@9
|
107 weight = sqrt(weight);
|
c@1
|
108
|
c@23
|
109 eprintln "weight = \(weight)";
|
c@23
|
110
|
c@9
|
111 {
|
c@9
|
112 kernel = cm.scaled weight kmat,
|
c@9
|
113 fftSize,
|
c@9
|
114 fftHop,
|
c@9
|
115 binsPerOctave,
|
c@12
|
116 atomsPerFrame = winNr,
|
c@12
|
117 atomSpacing = atomHop,
|
c@13
|
118 firstCentre,
|
c@40
|
119 maxFrequency = maxFreq,
|
c@40
|
120 minFrequency = minFreq,
|
c@40
|
121 binFrequencies,
|
c@9
|
122 bigQ
|
c@9
|
123 });
|
c@1
|
124
|
c@9
|
125 {
|
c@9
|
126 makeKernel
|
c@9
|
127 }
|
c@1
|
128
|