annotate yeti/cqtkernel.yeti @ 12:765bf12dcafb

Return the atom count & spacing as well
author Chris Cannam <c.cannam@qmul.ac.uk>
date Fri, 25 Oct 2013 17:39:35 +0100
parents c339dc95a7bd
children e2372a642b45
rev   line source
c@1 1
c@1 2 module cqtkernel;
c@1 3
c@3 4 vec = load may.vector;
c@3 5 bf = load may.vector.blockfuncs;
c@3 6 complex = load may.complex;
c@3 7 window = load may.signal.window;
c@3 8 fft = load may.transform.fft;
c@4 9 pl = load may.plot;
c@6 10 cm = load may.matrix.complex;
c@3 11
c@2 12 { pow, round, floor, ceil, nextPowerOfTwo } = load may.mathmisc;
c@1 13
c@9 14 makeKernel { sampleRate, maxFreq, binsPerOctave } =
c@9 15 (q = 1;
c@9 16 atomHopFactor = 0.25;
c@9 17 thresh = 0.0005;
c@9 18 minFreq = (maxFreq/2) * (pow 2 (1/binsPerOctave));
c@9 19 bigQ = q / ((pow 2 (1/binsPerOctave)) - 1);
c@1 20
c@9 21 maxNK = round(bigQ * sampleRate / minFreq);
c@9 22 minNK = round(bigQ * sampleRate /
c@9 23 (minFreq * (pow 2 ((binsPerOctave-1) / binsPerOctave))));
c@1 24
c@9 25 atomHop = round(minNK * atomHopFactor);
c@9 26
c@9 27 firstCentre = atomHop * (ceil ((ceil (maxNK/2)) / atomHop));
c@9 28
c@9 29 fftSize = nextPowerOfTwo (firstCentre + ceil (maxNK/2));
c@9 30
c@9 31 println "sampleRate = \(sampleRate), maxFreq = \(maxFreq), binsPerOctave = \(binsPerOctave), q = \(q), atomHopFactor = \(atomHopFactor), thresh = \(thresh)";
c@9 32 println "minFreq = \(minFreq), bigQ = \(bigQ), maxNK = \(maxNK), minNK = \(minNK), atomHop = \(atomHop), firstCentre = \(firstCentre), fftSize = \(fftSize)";
c@9 33
c@9 34 winNr = floor((fftSize - ceil(maxNK/2) - firstCentre) / atomHop) + 1;
c@9 35
c@9 36 lastCentre = firstCentre + (winNr - 1) * atomHop;
c@9 37
c@9 38 fftHop = (lastCentre + atomHop) - firstCentre;
c@9 39
c@9 40 println "winNr = \(winNr), lastCentre = \(lastCentre), fftHop = \(fftHop)";
c@9 41
c@9 42 fftFunc = fft.forward fftSize;
c@9 43
c@9 44 // Note the MATLAB uses exp(2*pi*1i*x) for a complex generating
c@9 45 // function. We can't do that here; we need to generate real and imag
c@9 46 // parts separately as real = cos(2*pi*x), imag = sin(2*pi*x).
c@9 47
c@9 48 kernels = map do k:
c@9 49
c@9 50 nk = round(bigQ * sampleRate / (minFreq * (pow 2 ((k-1)/binsPerOctave))));
c@9 51
c@9 52 // the cq MATLAB toolbox uses a symmetric window for
c@9 53 // blackmanharris -- which is odd because it uses a periodic one
c@9 54 // for other types. Oh well
c@9 55 win = bf.divideBy nk
c@9 56 (bf.sqrt
c@9 57 (window.windowFunction (BlackmanHarris ()) [Symmetric true] nk));
c@9 58
c@9 59 fk = minFreq * (pow 2 ((k-1)/binsPerOctave));
c@9 60
c@9 61 genKernel f = bf.multiply win
c@9 62 (vec.fromList
c@9 63 (map do i: f (2 * pi * fk * i / sampleRate) done [0..nk-1]));
c@9 64
c@9 65 reals = genKernel cos;
c@9 66 imags = genKernel sin;
c@9 67
c@9 68 atomOffset = firstCentre - ceil(nk/2);
c@9 69
c@9 70 map do i:
c@9 71
c@9 72 shift = vec.zeros (atomOffset + ((i-1) * atomHop));
c@9 73
c@9 74 specKernel = fftFunc
c@9 75 (complex.complexArray
c@9 76 (vec.concat [shift, reals])
c@9 77 (vec.concat [shift, imags]));
c@9 78
c@9 79 map do c:
c@9 80 if complex.magnitude c <= thresh then complex.zero else c fi
c@9 81 done specKernel;
c@9 82
c@9 83 done [1..winNr];
c@9 84
c@9 85 done [1..binsPerOctave];
c@9 86
c@9 87 kmat = cm.toSparse
c@9 88 (cm.scaled (1/fftSize)
c@9 89 (cm.newComplexMatrix (RowMajor()) (concat kernels)));
c@9 90
c@9 91 println "density = \(cm.density kmat)";
c@9 92
c@9 93 // Normalisation
c@9 94
c@9 95 wx1 = bf.maxindex (complex.magnitudes (cm.getRow 0 kmat));
c@9 96 wx2 = bf.maxindex (complex.magnitudes (cm.getRow (cm.height kmat - 1) kmat));
c@9 97
c@9 98 subset = cm.columnSlice kmat wx1 (wx2+1);
c@9 99 square = cm.product (cm.conjugateTransposed subset) subset;
c@9 100 diag = complex.magnitudes (cm.getDiagonal 0 square);
c@9 101 wK = vec.slice diag (round(1/q)) (vec.length diag - round(1/q) - 2);
c@9 102
c@9 103 weight = (fftHop / fftSize) / (bf.mean (bf.abs wK));
c@9 104 weight = sqrt(weight);
c@1 105
c@9 106 {
c@9 107 kernel = cm.scaled weight kmat,
c@9 108 fftSize,
c@9 109 fftHop,
c@9 110 binsPerOctave,
c@12 111 atomsPerFrame = winNr,
c@12 112 atomSpacing = atomHop,
c@9 113 maxFreq,
c@9 114 minFreq,
c@9 115 bigQ
c@9 116 });
c@1 117
c@9 118 {
c@9 119 makeKernel
c@9 120 }
c@1 121