c@1
|
1
|
c@1
|
2 module cqtkernel;
|
c@1
|
3
|
c@3
|
4 vec = load may.vector;
|
c@3
|
5 bf = load may.vector.blockfuncs;
|
c@3
|
6 complex = load may.complex;
|
c@3
|
7 window = load may.signal.window;
|
c@3
|
8 fft = load may.transform.fft;
|
c@4
|
9 pl = load may.plot;
|
c@6
|
10 cm = load may.matrix.complex;
|
c@3
|
11
|
c@2
|
12 { pow, round, floor, ceil, nextPowerOfTwo } = load may.mathmisc;
|
c@1
|
13
|
c@1
|
14 fs = 48000;
|
c@1
|
15
|
c@1
|
16 fmax = fs/2;
|
c@1
|
17
|
c@1
|
18 bins = 24;
|
c@1
|
19
|
c@1
|
20 q = 1;
|
c@1
|
21
|
c@1
|
22 atomHopFactor = 0.25;
|
c@1
|
23
|
c@1
|
24 thresh = 0.0005;
|
c@1
|
25
|
c@1
|
26 fmin = (fmax/2) * (pow 2 (1/bins));
|
c@1
|
27
|
c@1
|
28 bigQ = q / ((pow 2 (1/bins)) - 1);
|
c@1
|
29
|
c@1
|
30 nk_max = round(bigQ * fs / fmin);
|
c@1
|
31
|
c@1
|
32 nk_min = round(bigQ * fs / (fmin * (pow 2 ((bins-1)/bins))));
|
c@1
|
33
|
c@1
|
34 atomHop = round(nk_min * atomHopFactor);
|
c@1
|
35
|
c@1
|
36 first_center = atomHop * Math#ceil(Math#ceil(nk_max/2) / atomHop);
|
c@1
|
37
|
c@1
|
38 fftLen = nextPowerOfTwo (first_center + Math#ceil(nk_max/2));
|
c@1
|
39
|
c@1
|
40 println "fs = \(fs), fmax = \(fmax), bins = \(bins), q = \(q), atomHopFactor = \(atomHopFactor), thresh = \(thresh)";
|
c@1
|
41
|
c@1
|
42 println "fmin = \(fmin), bigQ = \(bigQ), nk_max = \(nk_max), nk_min = \(nk_min), atomHop = \(atomHop), first_center = \(first_center), fftLen = \(fftLen)";
|
c@1
|
43
|
c@2
|
44 winNr = floor((fftLen - ceil(nk_max/2) - first_center) / atomHop) + 1;
|
c@2
|
45
|
c@2
|
46 last_center = first_center + (winNr - 1) * atomHop;
|
c@2
|
47
|
c@2
|
48 fftHop = (last_center + atomHop) - first_center;
|
c@2
|
49
|
c@2
|
50 fftOverlap = ((fftLen - fftHop) / fftLen) * 100; // as % -- why? just for diagnostics?
|
c@2
|
51
|
c@2
|
52 println "winNr = \(winNr), last_center = \(last_center), fftHop = \(fftHop), fftOverlap = \(fftOverlap)%";
|
c@2
|
53
|
c@3
|
54 fftFunc = fft.forward fftLen;
|
c@2
|
55
|
c@3
|
56 // Note the MATLAB uses exp(2*pi*1i*x) for a complex generating
|
c@3
|
57 // function. We can't do that here; we need to generate real and imag
|
c@3
|
58 // parts separately as real = cos(2*pi*x), imag = sin(2*pi*x).
|
c@2
|
59
|
c@3
|
60 kernels = map do k:
|
c@3
|
61
|
c@3
|
62 nk = round(bigQ * fs / (fmin * (pow 2 ((k-1)/bins))));
|
c@3
|
63 println "k = \(k) -> nk = \(nk)";
|
c@3
|
64
|
c@3
|
65 win = bf.divideBy nk (bf.sqrt (window.blackmanHarris nk));
|
c@3
|
66
|
c@3
|
67 fk = fmin * (pow 2 ((k-1)/bins));
|
c@3
|
68
|
c@3
|
69 println "fk = \(fk)";
|
c@3
|
70
|
c@3
|
71 genKernel f = bf.multiply win
|
c@3
|
72 (vec.fromList (map do i: f (2 * pi * fk * i / fs) done [0..nk-1]));
|
c@3
|
73
|
c@3
|
74 reals = genKernel cos;
|
c@3
|
75 imags = genKernel sin;
|
c@3
|
76
|
c@3
|
77 atomOffset = first_center - ceil(nk/2);
|
c@3
|
78
|
c@3
|
79 map do i:
|
c@3
|
80
|
c@3
|
81 shift = atomOffset + ((i-1) * atomHop);
|
c@3
|
82
|
c@4
|
83 println "shift = \(shift)";
|
c@4
|
84
|
c@6
|
85 shiftedReals = vec.concat [vec.zeros shift, reals];
|
c@6
|
86 shiftedImags = vec.concat [vec.zeros shift, imags];
|
c@6
|
87
|
c@6
|
88 // println "shiftedReals = \(vec.list shiftedReals)";
|
c@6
|
89 // println "shiftedImags = \(vec.list shiftedImags)";
|
c@6
|
90
|
c@3
|
91 specKernel = fftFunc
|
c@3
|
92 (complex.complexArray
|
c@3
|
93 (vec.concat [vec.zeros shift, reals])
|
c@3
|
94 (vec.concat [vec.zeros shift, imags]));
|
c@3
|
95
|
c@3
|
96 map do c:
|
c@6
|
97 if complex.magnitude c < thresh then complex.zero else c fi
|
c@3
|
98 done specKernel;
|
c@4
|
99
|
c@3
|
100 done [1..winNr];
|
c@3
|
101
|
c@3
|
102 done [1..bins];
|
c@3
|
103
|
c@6
|
104 kmat = cm.toSparse
|
c@6
|
105 (cm.scaled (1/fftLen)
|
c@6
|
106 (cm.newComplexMatrix (ColumnMajor()) (concat kernels))); // or row major?
|
c@2
|
107
|
c@6
|
108 println "density = \(cm.density kmat)";
|
c@1
|
109
|
c@6
|
110 kmat;
|
c@5
|
111
|
c@6
|
112
|
c@6
|
113
|