c@1
|
1
|
c@1
|
2 module cqtkernel;
|
c@1
|
3
|
c@3
|
4 vec = load may.vector;
|
c@3
|
5 bf = load may.vector.blockfuncs;
|
c@3
|
6 complex = load may.complex;
|
c@3
|
7 window = load may.signal.window;
|
c@3
|
8 fft = load may.transform.fft;
|
c@3
|
9
|
c@2
|
10 { pow, round, floor, ceil, nextPowerOfTwo } = load may.mathmisc;
|
c@1
|
11
|
c@1
|
12 fs = 48000;
|
c@1
|
13
|
c@1
|
14 fmax = fs/2;
|
c@1
|
15
|
c@1
|
16 bins = 24;
|
c@1
|
17
|
c@1
|
18 q = 1;
|
c@1
|
19
|
c@1
|
20 atomHopFactor = 0.25;
|
c@1
|
21
|
c@1
|
22 thresh = 0.0005;
|
c@1
|
23
|
c@1
|
24 fmin = (fmax/2) * (pow 2 (1/bins));
|
c@1
|
25
|
c@1
|
26 bigQ = q / ((pow 2 (1/bins)) - 1);
|
c@1
|
27
|
c@1
|
28 nk_max = round(bigQ * fs / fmin);
|
c@1
|
29
|
c@1
|
30 nk_min = round(bigQ * fs / (fmin * (pow 2 ((bins-1)/bins))));
|
c@1
|
31
|
c@1
|
32 atomHop = round(nk_min * atomHopFactor);
|
c@1
|
33
|
c@1
|
34 first_center = atomHop * Math#ceil(Math#ceil(nk_max/2) / atomHop);
|
c@1
|
35
|
c@1
|
36 fftLen = nextPowerOfTwo (first_center + Math#ceil(nk_max/2));
|
c@1
|
37
|
c@1
|
38 println "fs = \(fs), fmax = \(fmax), bins = \(bins), q = \(q), atomHopFactor = \(atomHopFactor), thresh = \(thresh)";
|
c@1
|
39
|
c@1
|
40 println "fmin = \(fmin), bigQ = \(bigQ), nk_max = \(nk_max), nk_min = \(nk_min), atomHop = \(atomHop), first_center = \(first_center), fftLen = \(fftLen)";
|
c@1
|
41
|
c@2
|
42 winNr = floor((fftLen - ceil(nk_max/2) - first_center) / atomHop) + 1;
|
c@2
|
43
|
c@2
|
44 last_center = first_center + (winNr - 1) * atomHop;
|
c@2
|
45
|
c@2
|
46 fftHop = (last_center + atomHop) - first_center;
|
c@2
|
47
|
c@2
|
48 fftOverlap = ((fftLen - fftHop) / fftLen) * 100; // as % -- why? just for diagnostics?
|
c@2
|
49
|
c@2
|
50 println "winNr = \(winNr), last_center = \(last_center), fftHop = \(fftHop), fftOverlap = \(fftOverlap)%";
|
c@2
|
51
|
c@3
|
52 fftFunc = fft.forward fftLen;
|
c@2
|
53
|
c@3
|
54 // Note the MATLAB uses exp(2*pi*1i*x) for a complex generating
|
c@3
|
55 // function. We can't do that here; we need to generate real and imag
|
c@3
|
56 // parts separately as real = cos(2*pi*x), imag = sin(2*pi*x).
|
c@2
|
57
|
c@3
|
58 kernels = map do k:
|
c@3
|
59
|
c@3
|
60 nk = round(bigQ * fs / (fmin * (pow 2 ((k-1)/bins))));
|
c@3
|
61 println "k = \(k) -> nk = \(nk)";
|
c@3
|
62
|
c@3
|
63 win = bf.divideBy nk (bf.sqrt (window.blackmanHarris nk));
|
c@3
|
64
|
c@3
|
65 fk = fmin * (pow 2 ((k-1)/bins));
|
c@3
|
66
|
c@3
|
67 println "fk = \(fk)";
|
c@3
|
68
|
c@3
|
69 genKernel f = bf.multiply win
|
c@3
|
70 (vec.fromList (map do i: f (2 * pi * fk * i / fs) done [0..nk-1]));
|
c@3
|
71
|
c@3
|
72 reals = genKernel cos;
|
c@3
|
73 imags = genKernel sin;
|
c@3
|
74
|
c@3
|
75 atomOffset = first_center - ceil(nk/2);
|
c@3
|
76
|
c@3
|
77 map do i:
|
c@3
|
78
|
c@3
|
79 shift = atomOffset + ((i-1) * atomHop);
|
c@3
|
80
|
c@3
|
81 specKernel = fftFunc
|
c@3
|
82 (complex.complexArray
|
c@3
|
83 (vec.concat [vec.zeros shift, reals])
|
c@3
|
84 (vec.concat [vec.zeros shift, imags]));
|
c@3
|
85
|
c@3
|
86 map do c:
|
c@3
|
87 if complex.magnitude c < thresh then complex.zero else c fi
|
c@3
|
88 done specKernel;
|
c@3
|
89
|
c@3
|
90 done [1..winNr];
|
c@3
|
91
|
c@3
|
92 done [1..bins];
|
c@3
|
93
|
c@3
|
94 println "kernels = \(kernels)";
|
c@2
|
95
|
c@1
|
96 ();
|
c@1
|
97
|