andrewm@0
|
1 /*
|
robert@372
|
2 ____ _____ _ _
|
robert@372
|
3 | __ )| ____| | / \
|
robert@372
|
4 | _ \| _| | | / _ \
|
robert@372
|
5 | |_) | |___| |___ / ___ \
|
robert@372
|
6 |____/|_____|_____/_/ \_\.io
|
robert@372
|
7
|
andrewm@0
|
8 */
|
andrewm@0
|
9
|
robert@372
|
10 /*
|
robert@372
|
11 *
|
robert@372
|
12 * Andrew McPherson and Victor Zappi
|
robert@372
|
13 * Queen Mary, University of London
|
robert@372
|
14 */
|
robert@372
|
15
|
robert@372
|
16 /**
|
robert@372
|
17 \example 3_analog_output
|
robert@372
|
18
|
robert@372
|
19 Fading LEDs
|
robert@372
|
20 -----------
|
robert@372
|
21
|
robert@372
|
22 This sketch uses a sine wave to drive the brightness of a series of LEDs
|
robert@372
|
23 connected to the eight analog out pins. Again you can see the nested `for` loop
|
robert@372
|
24 structure but this time for the analog output channels rather than the audio.
|
robert@372
|
25
|
robert@372
|
26 - connect an LED in series with a 470ohm resistor between each of the analogOut pins and ground.
|
robert@372
|
27
|
robert@372
|
28 Within the first for loop in render we cycle through each frame in the analog
|
robert@372
|
29 output matrix. At each frame we then cycle through the analog output channels
|
robert@372
|
30 with another for loop and set the output voltage according to the phase of a
|
robert@372
|
31 sine tone that acts as an LFO. The analog output pins can provide a voltage of
|
robert@372
|
32 ~4.092V.
|
robert@372
|
33
|
robert@372
|
34 The output on each pin is set with `analogWrite()` within the for loop that
|
robert@372
|
35 cycles through the analog output channels. This needs to be provided with
|
robert@372
|
36 arguments as follows `analogWrite(context, n, channel, out)`. Channel is
|
robert@372
|
37 where the you give the address of the analog output pin (in this case we cycle
|
robert@372
|
38 through each pin address in the for loop), out is the variable that holds the
|
robert@372
|
39 desired output (in this case set by the sine wave).
|
robert@372
|
40
|
robert@372
|
41 Notice that the phase of the brightness cycle for each led is different. This
|
robert@372
|
42 is achieved by updating a variable that stores a relative phase value. This
|
robert@372
|
43 variable is advanced by pi/4 (1/8 of a full rotation) for each channel giving
|
robert@372
|
44 each of the eight LEDs a different phase.
|
robert@372
|
45 */
|
andrewm@0
|
46
|
giuliomoro@301
|
47 #include <Bela.h>
|
andrewm@0
|
48 #include <rtdk.h>
|
andrewm@0
|
49 #include <cmath>
|
andrewm@0
|
50
|
andrewm@0
|
51 // Set range for analog outputs designed for driving LEDs
|
andrewm@52
|
52 const float kMinimumAmplitude = (1.5 / 5.0);
|
andrewm@52
|
53 const float kAmplitudeRange = 1.0 - kMinimumAmplitude;
|
andrewm@0
|
54
|
andrewm@0
|
55 float gFrequency;
|
andrewm@0
|
56 float gPhase;
|
andrewm@0
|
57 float gInverseSampleRate;
|
andrewm@0
|
58
|
andrewm@56
|
59 // setup() is called once before the audio rendering starts.
|
andrewm@0
|
60 // Use it to perform any initialisation and allocation which is dependent
|
andrewm@0
|
61 // on the period size or sample rate.
|
andrewm@0
|
62 //
|
andrewm@0
|
63 // userData holds an opaque pointer to a data structure that was passed
|
andrewm@0
|
64 // in from the call to initAudio().
|
andrewm@0
|
65 //
|
andrewm@0
|
66 // Return true on success; returning false halts the program.
|
andrewm@0
|
67
|
giuliomoro@301
|
68 bool setup(BelaContext *context, void *userData)
|
andrewm@0
|
69 {
|
andrewm@0
|
70 // Retrieve a parameter passed in from the initAudio() call
|
andrewm@0
|
71 gFrequency = *(float *)userData;
|
andrewm@0
|
72
|
andrewm@52
|
73 if(context->analogFrames == 0) {
|
andrewm@12
|
74 rt_printf("Error: this example needs the matrix enabled\n");
|
andrewm@0
|
75 return false;
|
andrewm@0
|
76 }
|
andrewm@0
|
77
|
andrewm@52
|
78 gInverseSampleRate = 1.0 / context->analogSampleRate;
|
andrewm@0
|
79 gPhase = 0.0;
|
andrewm@0
|
80
|
andrewm@0
|
81 return true;
|
andrewm@0
|
82 }
|
andrewm@0
|
83
|
andrewm@0
|
84 // render() is called regularly at the highest priority by the audio engine.
|
andrewm@0
|
85 // Input and output are given from the audio hardware and the other
|
andrewm@0
|
86 // ADCs and DACs (if available). If only audio is available, numMatrixFrames
|
andrewm@0
|
87 // will be 0.
|
andrewm@0
|
88
|
giuliomoro@301
|
89 void render(BelaContext *context, void *userData)
|
andrewm@0
|
90 {
|
andrewm@56
|
91 for(unsigned int n = 0; n < context->analogFrames; n++) {
|
andrewm@0
|
92 // Set LED to different phase for each matrix channel
|
andrewm@0
|
93 float relativePhase = 0.0;
|
andrewm@56
|
94 for(unsigned int channel = 0; channel < context->analogChannels; channel++) {
|
andrewm@0
|
95 float out = kMinimumAmplitude + kAmplitudeRange * 0.5f * (1.0f + sinf(gPhase + relativePhase));
|
andrewm@0
|
96
|
andrewm@308
|
97 analogWrite(context, n, channel, out);
|
andrewm@0
|
98
|
andrewm@0
|
99 // Advance by pi/4 (1/8 of a full rotation) for each channel
|
andrewm@0
|
100 relativePhase += M_PI * 0.25;
|
andrewm@0
|
101 }
|
andrewm@0
|
102
|
andrewm@0
|
103 gPhase += 2.0 * M_PI * gFrequency * gInverseSampleRate;
|
andrewm@0
|
104 if(gPhase > 2.0 * M_PI)
|
andrewm@0
|
105 gPhase -= 2.0 * M_PI;
|
andrewm@0
|
106 }
|
andrewm@0
|
107 }
|
andrewm@0
|
108
|
andrewm@56
|
109 // cleanup() is called once at the end, after the audio has stopped.
|
andrewm@56
|
110 // Release any resources that were allocated in setup().
|
andrewm@0
|
111
|
giuliomoro@301
|
112 void cleanup(BelaContext *context, void *userData)
|
andrewm@0
|
113 {
|
andrewm@0
|
114
|
andrewm@0
|
115 }
|