Piano Evaluation for Level Normalisation » History » Version 44

Chris Cannam, 2014-07-23 03:31 PM

1 1 Chris Cannam
h1. Piano Evaluation for Level Normalisation
2 1 Chris Cannam
3 1 Chris Cannam
Lack of normalisation for Vamp plugin inputs is a problem when analysing quiet recordings (see #1028).
4 1 Chris Cannam
5 1 Chris Cannam
Testing using a small set of piano recordings, quickly evaluating performance across the first 30 seconds under a number of different normalisation / level management regimes.
6 1 Chris Cannam
7 3 Chris Cannam
h3. Input files
8 1 Chris Cannam
9 1 Chris Cannam
|Filename|Signal max approx|
10 4 Chris Cannam
|@31.wav@|0.57|
11 4 Chris Cannam
|@MAPS_MUS-bach_846_AkPnBcht.wav@|0.12|
12 4 Chris Cannam
|@MAPS_MUS-chpn_op7_1_ENSTDkAm.wav@|0.33|
13 4 Chris Cannam
|@MAPS_MUS-scn15_7_SptkBGAm.wav@|0.13|
14 4 Chris Cannam
|@mz_333_1MINp_align.wav@|0.10|
15 2 Chris Cannam
16 2 Chris Cannam
The plugin has one internal threshold parameter, which can be lowered to find quieter notes (at the expense of course of more false positives). We don't really want to expose this (or any continuous controls) as a parameter. But we need to have approximately predictable input levels, for this threshold to be meaningful.
17 2 Chris Cannam
18 3 Chris Cannam
h3. Methods
19 2 Chris Cannam
20 2 Chris Cannam
|Name|Hg revision|Description|
21 25 Chris Cannam
|@norm@|commit:d721a17f3e14|Normalise to 0.50 max before running plugin (can't do this in plugin: it's here as the reference case)|
22 4 Chris Cannam
|@as-is@|commit:d721a17f3e14|No normalisation|
23 4 Chris Cannam
|@to-date@|commit:d9b688700819|Track max signal level _so far_, adjust each sample so that max is at 0.50|
24 28 Chris Cannam
|@r2@,@r3@,@r4@,@r5@,@r6@|commit:b5a8836dd2a4|Preprocess with "Flatten Dynamics":/projects/flattendynamics at 0.02, 0.03, 0.04, 0.05, 0.06 target RMS levels respectively|
25 29 Chris Cannam
|@s8@|commit:4ac067799e0b|With "Flatten Dynamics second attempt":/projects/flattendynamics/wiki/Wiki with max RMS targeted to 0.08|
26 32 Chris Cannam
|@t4@|commit:d67fae2bb29e|With Flatten Dynamics attempt 2a with max RMS targeted to 0.04|
27 37 Chris Cannam
|@u4@|commit:70773820e719|With Flatten Dynamics attempt 2b with max RMS targeted to 0.04|
28 32 Chris Cannam
29 3 Chris Cannam
h3. Results
30 3 Chris Cannam
31 3 Chris Cannam
Reporting only the note onset F-measure for the first 30 seconds of each piece.
32 1 Chris Cannam
33 34 Chris Cannam
|Filename|@norm@|@as-is@|@to-date@|@r2@|@r3@|@r4@|@r5@|@r6@|@s8@|@t4@|@u4@|
34 34 Chris Cannam
|@31.wav@|50|33|40|45|47|48|45|43|42|49|45|
35 34 Chris Cannam
|@MAPS_MUS-bach_846_AkPnBcht.wav@|87|15|62|64|85|87|87|86|81|86|87|
36 34 Chris Cannam
|@MAPS_MUS-chpn_op7_1_ENSTDkAm.wav@|33|31|31|11|25|31|32|31|32|34|35|
37 34 Chris Cannam
|@MAPS_MUS-scn15_7_SptkBGAm.wav@|73|16|61|50|57|67|74|75|70|69|68|
38 34 Chris Cannam
|@mz_333_1MINp_align.wav@|66|3|58|42|60|64|66|63|66|63|65|
39 7 Chris Cannam
40 10 Chris Cannam
The precision (_proportion of correct onsets among detected onsets, or 1 minus the false-positive rate_) and recall (_proportion of correctly-detected onsets among all ground-truth onsets, or true-positive rate_) vary as you would hope:
41 10 Chris Cannam
42 10 Chris Cannam
 * when the resulting audio level is quieter than the @norm@ case, precision is high and recall is low but the F-measure is worse than the @norm@ case
43 10 Chris Cannam
 * when the resulting audio level is louder than the @norm@ case, precision is low and recall is high and the F-measure is still worse than the @norm@ case
44 10 Chris Cannam
45 12 Chris Cannam
This suggests that our threshold (which happens to be 6) is moderately well-suited to the @norm@ case, at least to optimise F-measure (this might not be the most perceptually useful measure though).
46 13 Chris Cannam
47 38 Chris Cannam
The best results (apart from @norm@) above seem to be @r5@ and @u4@. Let's try to refine the parameters for each of those and see if any patterns emerge.
48 38 Chris Cannam
49 38 Chris Cannam
h4. Flatten Dynamics fine-tuning
50 38 Chris Cannam
51 39 Chris Cannam
The adjustable parameters within @r5@, with their defaults, are
52 39 Chris Cannam
53 39 Chris Cannam
|Parameter|Description|Default|
54 39 Chris Cannam
|@historySeconds@|Length of RMS window|4.0 sec|
55 39 Chris Cannam
|@catchUpSeconds@|Length of gain slide window|0.5 sec|
56 39 Chris Cannam
|@targetRMS@|Target RMS value|0.05|
57 39 Chris Cannam
|@maxGain@|Hard limit on gain|20.0|
58 39 Chris Cannam
59 39 Chris Cannam
The @targetRMS@ is the one we have been varying across @r2@, @r3@ etc -- for @r5@ it is fixed at 0.05. We don't need to test @maxGain@ variation.
60 39 Chris Cannam
61 39 Chris Cannam
Here @r5hNcM@ represents the @r5@ method with @historySeconds@ = N and @catchUpSeconds@ = M/10. So @r5@ is the same as @r5h4c05@. The @r5@ test was run again, hence variation from above results.
62 39 Chris Cannam
63 44 Chris Cannam
|Filename|@norm@|@r5@|@r5h2c05@|@r5h5c05@|@r5h6c05@|@r5h8c05@|@r5h4c01@|@r5h4c10@|
64 41 Chris Cannam
|@31.wav@|50|47|38|47|48|46|46|53|
65 41 Chris Cannam
|@MAPS_MUS-bach_846_AkPnBcht.wav@|87|87|87|87|87|88|86|88|
66 41 Chris Cannam
|@MAPS_MUS-chpn_op7_1_ENSTDkAm.wav@|33|32|33|32|29|31|32|31|
67 41 Chris Cannam
|@MAPS_MUS-scn15_7_SptkBGAm.wav@|73|73|66|72|76|73|73|73|
68 41 Chris Cannam
|@mz_333_1MINp_align.wav@|66|66|64|64|66|63|65|66|
69 41 Chris Cannam
70 42 Chris Cannam
The adjustable parameters within @u4@, with their defaults, are
71 42 Chris Cannam
72 42 Chris Cannam
|Parameter|Description|Default|
73 42 Chris Cannam
|@longTermSeconds@|Length of long-term RMS window|4.0 sec|
74 42 Chris Cannam
|@shortTermSeconds@|Length of short-term RMS window|1.0 sec|
75 42 Chris Cannam
|@catchUpSeconds@|Length of gain slide window|0.2 sec|
76 42 Chris Cannam
|@targetMaxRMS@|Target RMS value|0.04|
77 42 Chris Cannam
|@rmsMaxDecay@|Fallback multiplier for max RMS per sample|0.999|
78 42 Chris Cannam
|@squashFactor@|Exponent to skew 0,1 range toward top of range|0.3| 
79 42 Chris Cannam
|@maxGain@|Hard limit on gain|20.0|
80 42 Chris Cannam
81 43 Chris Cannam
Start by varying @squashFactor@ with others at defaults:
82 1 Chris Cannam
83 1 Chris Cannam
|Filename|@norm@|@r5@|0.1|0.3|0.5|1.0|
84 43 Chris Cannam
|@31.wav@|50|47|42|40|41|45|
85 43 Chris Cannam
|@MAPS_MUS-bach_846_AkPnBcht.wav@|87|87|81|82|82|85|
86 43 Chris Cannam
|@MAPS_MUS-chpn_op7_1_ENSTDkAm.wav@|33|32|29|30|33|30|
87 43 Chris Cannam
|@MAPS_MUS-scn15_7_SptkBGAm.wav@|73|73|59|64|68|63|
88 43 Chris Cannam
|@mz_333_1MINp_align.wav@|66|66|65|67|64|59|
89 43 Chris Cannam
90 43 Chris Cannam
The 0.3 results are far worse than the @u4@ results obtained earlier (even though this is the same code). Variance is evidently high.
91 43 Chris Cannam
92 43 Chris Cannam
I don't think @u4@ is showing good enough results to justify its complexity over the global-only @r5@ code, and the squash factor seems to offer little.
93 1 Chris Cannam
94 44 Chris Cannam
Let's supersede the @u@-series with an @s@-series that uses the long-term window (only) from @r5@ but with some decay in max RMS value to account for pieces that go loud-soft alternately. Parameters:
95 44 Chris Cannam
96 44 Chris Cannam
|Parameter|Description|Default|
97 44 Chris Cannam
|@historySeconds@|Length of long-term RMS window|4.0 sec|
98 44 Chris Cannam
|@catchUpSeconds@|Length of gain slide window|0.2 sec|
99 44 Chris Cannam
|@targetMaxRMS@|Target RMS value|0.05|
100 44 Chris Cannam
|@rmsMaxDecay@|Fallback multiplier for max RMS per sample|0.999|
101 44 Chris Cannam
|@maxGain@|Hard limit on gain|20.0|
102 44 Chris Cannam
103 44 Chris Cannam
We have not yet adjusted this for target RMS, never mind the others. Here's target RMS variation:
104 44 Chris Cannam
105 44 Chris Cannam
|Filename|@norm@|@r5@|@s4@|@s5@|@s6@|@s7@|
106 44 Chris Cannam
|@31.wav@|50|47|46|42|44|45|
107 44 Chris Cannam
|@MAPS_MUS-bach_846_AkPnBcht.wav@|87|87|84|83|81|76|
108 44 Chris Cannam
|@MAPS_MUS-chpn_op7_1_ENSTDkAm.wav@|33|32|31|33|30|30|
109 44 Chris Cannam
|@MAPS_MUS-scn15_7_SptkBGAm.wav@|73|73|64|68|66|63|
110 44 Chris Cannam
|@mz_333_1MINp_align.wav@|66|66|60|63|63|63|
111 42 Chris Cannam
112 39 Chris Cannam
113 14 Chris Cannam
h4. For different piano template sets
114 14 Chris Cannam
115 17 Chris Cannam
The above results are all generated using four piano templates, numbered 1-3 plus @pianorwc@.
116 17 Chris Cannam
117 17 Chris Cannam
Here are results using the @norm@ and @as-is@ methods, but with different sets of piano templates: first with three templates (1-3) and then with each template in turn as the only one.
118 17 Chris Cannam
119 19 Chris Cannam
The template turns out not to make an enormous difference -- perhaps because these recordings contain nothing but piano?
120 13 Chris Cannam
121 13 Chris Cannam
|Filename|@norm@/all|@as-is@/all|@norm@/3of4|@as-is@/3of4|@norm@/1|@as-is@/1|@norm@/2|@as-is@/2|@norm@/3|@as-is@/3|@norm@/rwc|@as-is@/rwc|
122 22 Chris Cannam
|@31.wav@|50|33|51|30|50|34|44|42|50|32|56|36|
123 22 Chris Cannam
|@MAPS_MUS-bach_846_AkPnBcht.wav@|87|15|86|16|86|24|75|20|73|10|71|18|
124 22 Chris Cannam
|@MAPS_MUS-chpn_op7_1_ENSTDkAm.wav@|33|31|32|32|31|22|29|31|35|34|32|28|
125 22 Chris Cannam
|@MAPS_MUS-scn15_7_SptkBGAm.wav@|73|16|71|19|71|12|68|14|72|17|70|15|
126 22 Chris Cannam
|@mz_333_1MINp_align.wav@|66|3|68|1|63|4|67|2|67|1|63|3|
127 20 Chris Cannam
128 20 Chris Cannam
h4. For "generic" template set
129 20 Chris Cannam
130 20 Chris Cannam
The above results all use template sets with only piano templates in them.
131 20 Chris Cannam
132 20 Chris Cannam
Here are results using the @norm@ and @as-is@ methods, but with the full set of instrument templates (four pianos plus all the rest).
133 21 Chris Cannam
134 1 Chris Cannam
|Filename|@norm@|@as-is@|
135 1 Chris Cannam
|@31.wav@|49|37|
136 1 Chris Cannam
|@MAPS_MUS-bach_846_AkPnBcht.wav@|79|34|
137 1 Chris Cannam
|@MAPS_MUS-chpn_op7_1_ENSTDkAm.wav@|31|28|
138 1 Chris Cannam
|@MAPS_MUS-scn15_7_SptkBGAm.wav@|67|16|
139 1 Chris Cannam
|@mz_333_1MINp_align.wav@|63|5|
140 34 Chris Cannam
141 34 Chris Cannam
h4. Cross-checking with non-piano test data
142 34 Chris Cannam
143 34 Chris Cannam
The results need to be roughly comparable with those obtained from pre-normalised data using other datasets as well as the piano one. Here is a subset of the TRIOS dataset. The @norm@ result is that obtained from the plugin prior to doing this work, using pre-normalised data.
144 34 Chris Cannam
145 36 Chris Cannam
The @mirex@ result is that from the MIREX 2012 submission in MATLAB, but note that this always uses all instrument templates while the plugin results are based on selecting the "right" instrument for the piece (which is assumed to be the best, though we aren't actually testing that here).
146 35 Chris Cannam
147 35 Chris Cannam
|File|@mirex@|@norm@|@u4@|
148 35 Chris Cannam
|mozart/piano|60|64|56|
149 35 Chris Cannam
|mozart/viola|33|37|35|
150 35 Chris Cannam
|mozart/mix|51|58|55|
151 35 Chris Cannam
|mozart/clarinet|74|80|86|
152 35 Chris Cannam
|lussier/piano|45|52|63|
153 35 Chris Cannam
|lussier/mix|36|43|40|
154 35 Chris Cannam
|lussier/bassoon|43|75|80|
155 35 Chris Cannam
|lussier/trumpet|43|46|51|
156 35 Chris Cannam
|take_five/piano|61|46|69|
157 35 Chris Cannam
|take_five/mix|62|73|69|
158 35 Chris Cannam
|take_five/saxophone|78|80|84|