Overview

The iterative process of masking minimisation when mixing multitrack audio is a challenging optimisation problem, in part due to the complexity and non-linearity of auditory perception. In this article, we first propose a multitrack masking metric inspired by the MPEG psychoacoustic model. We investigate different audio processing techniques to manipulate the frequency and dynamic characteristics of the signal in order to reduce masking based on the proposed metric. We also investigate whether or not automatically mixing using subgrouping is beneficial or not to perceived quality and clarity of a mix. Evaluation results suggest that our proposed masking metric when utilised in an automatic mixing framework reduces inter-channel auditory masking as well as improves the perceived quality and perceived clarity of a mix. Furthermore, our results suggest that using subgrouping in an automatic mixing framework can also improve the perceived quality and perceived clarity of a mix.

Members

Manager: David Ronan