Notes on first meeting » History » Version 18

Gyorgy Fazekas, 2012-02-23 01:08 PM

1 6 Gyorgy Fazekas
These notes are based on our initial meeting on 24 January 2012. The aim was to collect some use cases and have an initial idea on what needs to be done to extend or revise the existing Audio Features Ontology.
2 1 Gyorgy Fazekas
3 14 Gyorgy Fazekas
h1. Topics discussed 
4 1 Gyorgy Fazekas
5 14 Gyorgy Fazekas
A rough list of topics discussed during the first meeting:
6 14 Gyorgy Fazekas
7 1 Gyorgy Fazekas
** What are the main research use cases for an Audio Features Ontology (AF) ?
8 2 Gyorgy Fazekas
** Are they served well by the existing AF ? 
9 1 Gyorgy Fazekas
** If not, what are the most important extensions we need to do?
10 1 Gyorgy Fazekas
** Does the fundamental structure of the ontology need to be changed?
11 1 Gyorgy Fazekas
** What is the relation of AF to existing software, including:
12 10 Gyorgy Fazekas
13 8 Gyorgy Fazekas
 * software like: Sonic Annotator, Sonic Visualiser, SAWA, AudioDB other tools... 
14 1 Gyorgy Fazekas
 * and projects like: OMRAS2, EASAIER, SALAMI, new Semantic Media/Semantic Audio grants...
15 7 Gyorgy Fazekas
** Personal Objectives: what are we going to do with a modified/re-engineered ontology?
16 1 Gyorgy Fazekas
17 2 Gyorgy Fazekas
18 4 Gyorgy Fazekas
h1. Use cases:
19 1 Gyorgy Fazekas
20 12 Gyorgy Fazekas
Use cases discussed so far:
21 12 Gyorgy Fazekas
22 12 Gyorgy Fazekas
+Thomas:+
23 1 Gyorgy Fazekas
  
24 1 Gyorgy Fazekas
** drive audio effects -> adaptive effect (controlling effects)
25 1 Gyorgy Fazekas
** KM like use case: association of audio effects and audio features e.g. pitch shifter won’t change onsets
26 1 Gyorgy Fazekas
** part of the AFX ontology
27 1 Gyorgy Fazekas
** more audio features
28 1 Gyorgy Fazekas
** technical classification of audio effects
29 1 Gyorgy Fazekas
30 1 Gyorgy Fazekas
31 12 Gyorgy Fazekas
+Steve:+
32 1 Gyorgy Fazekas
** Finding structure, repeated sequences of features
33 1 Gyorgy Fazekas
** Beat related stuff, BPM (tempo, major/minor is it an audio feature, not necessarilty)
34 1 Gyorgy Fazekas
** Chords => Chord ontology
35 1 Gyorgy Fazekas
** Melody and notes
36 1 Gyorgy Fazekas
37 1 Gyorgy Fazekas
38 12 Gyorgy Fazekas
+George:+
39 1 Gyorgy Fazekas
** Improve SAWA
40 1 Gyorgy Fazekas
** Facilitate the development of intelligent music production systems
41 1 Gyorgy Fazekas
** Release large content based metadata repositories in RDF
42 1 Gyorgy Fazekas
** Re-release the MSD in RDF (??)
43 1 Gyorgy Fazekas
** Deploy a knowledge based environment for content-based audio analysis based on the concept of the Knowledge Machine that can combine multiple modalities
44 1 Gyorgy Fazekas
** Research reproducibility using Ontologies as a model to exchange research data.
45 1 Gyorgy Fazekas
46 6 Gyorgy Fazekas
47 18 Gyorgy Fazekas
h1. Fundamental structure of the existing AF Ontology:
48 18 Gyorgy Fazekas
49 18 Gyorgy Fazekas
The Audio Features Ontology currently provides a core model which distinguishes between audio features based on two attributes:
50 18 Gyorgy Fazekas
51 18 Gyorgy Fazekas
# Temporal characteristics
52 18 Gyorgy Fazekas
# Data density
53 18 Gyorgy Fazekas
54 18 Gyorgy Fazekas
The first dichotomy allows for describing features either instantaneous events (e.g. note onsets, tempo change), or features with a known time duration (notes, structural segments, harmonic segments, the extent of an STFT or Chromagram frame).
55 18 Gyorgy Fazekas
56 18 Gyorgy Fazekas
The second dichotomy addresses a representational issue, and allows for describing how a feature relates to the extent of an audio file: 
57 18 Gyorgy Fazekas
** whether it is scattered and irregularly occurs during the course of a track (i.e. sparse),
58 18 Gyorgy Fazekas
** or occurs regularly and have a fixed duration (i.e. dense).
59 18 Gyorgy Fazekas
Alternative conceptualisations and some examples are summarised below:
60 18 Gyorgy Fazekas
61 18 Gyorgy Fazekas
!http://isophonics.net/sites/isophonics.net/files/FeatureConceptualisations.png!
62 18 Gyorgy Fazekas
*Fig 1.* Conceptualisations of content-based features.
63 18 Gyorgy Fazekas
64 18 Gyorgy Fazekas
The main scope of the existing ontology is to provide a framework for communication and to describe the association of features and audio signals. It does not classify features, describe their interrelationships or their computation. It deals with data density, and temporal characteristics only and differentiates between dense signal-like features of various dimensionality, (chromagrams, detection functions) and sparse features that are scattered across the signal timeline. This core model is shown in the following diagram:
65 18 Gyorgy Fazekas
66 18 Gyorgy Fazekas
!http://isophonics.net/sites/isophonics.net/files/AF_ontology_small.png!
67 18 Gyorgy Fazekas
*Fig. 2.* Core model of the existing Audio Features Ontology
68 18 Gyorgy Fazekas
69 1 Gyorgy Fazekas
h1. Open issues:
70 6 Gyorgy Fazekas
71 1 Gyorgy Fazekas
Some important questions to be decided on:
72 12 Gyorgy Fazekas
73 1 Gyorgy Fazekas
h2. Domain boundaries and scope:
74 1 Gyorgy Fazekas
75 12 Gyorgy Fazekas
** Are Musicological concepts outside the domain of an AF ?
76 14 Gyorgy Fazekas
** How about Physical features:
77 14 Gyorgy Fazekas
 
78 1 Gyorgy Fazekas
 * Acoustic features, 
79 1 Gyorgy Fazekas
 * Perceptual Features, 
80 1 Gyorgy Fazekas
 * DSP type feature, 
81 11 Gyorgy Fazekas
 * Musical Features (musically meaningful features related to acoustics) 
82 1 Gyorgy Fazekas
83 11 Gyorgy Fazekas
** The scope of the revised ontology may be:
84 1 Gyorgy Fazekas
85 1 Gyorgy Fazekas
 * Facilitate data-exchange for various purposes: (e.g. Linked Open Data, Research reproducibility, etc...)
86 17 Gyorgy Fazekas
 * Facilitate building intelligent/knowledge-based systems:
87 17 Gyorgy Fazekas
 ** How expressive the Ontology should be?
88 6 Gyorgy Fazekas
 ** What kind of reasoning services should be supported?
89 17 Gyorgy Fazekas
90 6 Gyorgy Fazekas
h2. What are the strength and weaknesses of the existing ontology?
91 17 Gyorgy Fazekas
92 17 Gyorgy Fazekas
** Does it serve us well?
93 1 Gyorgy Fazekas
** For example, loudness is defined as a segment in AF, and it does not fit a perceptual attribute well.
94 1 Gyorgy Fazekas
** What depth do we want ? (both in terms of scope and the level of detail in describing a feature extraction workflow)
95 1 Gyorgy Fazekas
** How AF relates to the DSP workflows used in extracting them?
96 1 Gyorgy Fazekas
97 1 Gyorgy Fazekas
98 18 Gyorgy Fazekas
h1. Existing resources :
99 2 Gyorgy Fazekas
100 18 Gyorgy Fazekas
h2. Some work related to Steve's use cases, segmentation and Ontologies:
101 2 Gyorgy Fazekas
102 2 Gyorgy Fazekas
** SALAMI Project: Kevin Page, DaveDeRoure http://salami.music.mcgill.ca/
103 2 Gyorgy Fazekas
** The Segment Ontology: http://users.ox.ac.uk/~oerc0033/preprints/admire2011.pdf
104 2 Gyorgy Fazekas
** PopStructure Ontology: Kurt Jacobson Unpublished. 
105 2 Gyorgy Fazekas
(Example available: http://wiki.musicontology.com/index.php/Structural_annotations_of_%22Can%27t_buy_me_love%22_by_the_Beatles) 
106 1 Gyorgy Fazekas
** Similarity Ontology: Kurt Jacobson http://grasstunes.net/ontology/musim/musim.html
107 1 Gyorgy Fazekas
108 2 Gyorgy Fazekas
109 18 Gyorgy Fazekas
h1. Ideas/resources for new Ontologies:
110 2 Gyorgy Fazekas
111 1 Gyorgy Fazekas
** Steve has worked on Acoustics related ontology
112 2 Gyorgy Fazekas
113 2 Gyorgy Fazekas
** Creating a DSP ontology:
114 2 Gyorgy Fazekas
** include processing steps down to math operations 
115 2 Gyorgy Fazekas
  (this can take advantage to the math:namespace in CWM: http://www.w3.org/DesignIssues/Notation3.html)
116 2 Gyorgy Fazekas
** describe common DSP parameters
117 2 Gyorgy Fazekas
118 1 Gyorgy Fazekas
** create an Acoustics Ontology
119 1 Gyorgy Fazekas
** describe Musicological concepts
120 2 Gyorgy Fazekas
** describe concepts related to cognitive and perceptual issues
121 2 Gyorgy Fazekas
122 1 Gyorgy Fazekas
123 1 Gyorgy Fazekas
h2. Currently missing features
124 2 Gyorgy Fazekas
125 1 Gyorgy Fazekas
** MFCC-s
126 1 Gyorgy Fazekas
** Rythmogram
127 1 Gyorgy Fazekas
** RMS energy
128 1 Gyorgy Fazekas
** combined features, e.g. weighted combinations or statistical averages over features
129 1 Gyorgy Fazekas
130 1 Gyorgy Fazekas
131 1 Gyorgy Fazekas
h2. Development issues
132 1 Gyorgy Fazekas
133 1 Gyorgy Fazekas
** chaining, combination, weighting
134 2 Gyorgy Fazekas
** how you associate features with arbitrary data
135 1 Gyorgy Fazekas
** summary feature types 
136 2 Gyorgy Fazekas
** SM (similarity matrix) are they part of the ontoogy?
137 1 Gyorgy Fazekas
** how to describe salience, can you hear it, can you perceive, is there an agreement
138 1 Gyorgy Fazekas
** how to describe weighting, confidence
139 1 Gyorgy Fazekas
** mood, music psychology, cognition, emotion, (perception ?)
140 1 Gyorgy Fazekas
** provenance => music provenance
141 1 Gyorgy Fazekas
** deprecation and versioning
142 1 Gyorgy Fazekas
143 1 Gyorgy Fazekas
144 18 Gyorgy Fazekas
h1. Objectives:
145 1 Gyorgy Fazekas
146 18 Gyorgy Fazekas
Long term goals and some concrete tasks that can be done as the outcome of the collaboration:
147 1 Gyorgy Fazekas
148 1 Gyorgy Fazekas
** A version of Sonic Annotator that produces output adhering the new ontology
149 1 Gyorgy Fazekas
** Are we making people happier by doing so?
150 2 Gyorgy Fazekas
** gradual transition period?
151 1 Gyorgy Fazekas
** extend other software toolkits; e.g. a verison of Marsyas in C++
152 1 Gyorgy Fazekas
** multitrack processing using Sonic Annotator (this feature might come along soon)
153 1 Gyorgy Fazekas
154 1 Gyorgy Fazekas
155 18 Gyorgy Fazekas
h2. Some immediate tasks before the next meeting:
156 1 Gyorgy Fazekas
157 2 Gyorgy Fazekas
** collect more resources 
158 1 Gyorgy Fazekas
** Verify the relationship between AF as is, and other feature/segmentation Ontologies
159 2 Gyorgy Fazekas
** what other software uses it?
160 2 Gyorgy Fazekas
** papers and literature review
161 2 Gyorgy Fazekas
** relation to projects e.g. SIEMAC
162 1 Gyorgy Fazekas
** collect features that we need
163 1 Gyorgy Fazekas
** define scope (extend the diagram of the set of ontologies: )
164 2 Gyorgy Fazekas
** collect specific application examples from existing processing chain / workflow
165 1 Gyorgy Fazekas
166 18 Gyorgy Fazekas
Collect software/projects that use/produce audio features:
167 2 Gyorgy Fazekas
168 18 Gyorgy Fazekas
** plugins (analysis, adaptive effects, adaptive synthesis)
169 18 Gyorgy Fazekas
** LADSPA, 
170 18 Gyorgy Fazekas
** VAMP, 
171 18 Gyorgy Fazekas
** Marsyas, 
172 18 Gyorgy Fazekas
** CLAM, 
173 18 Gyorgy Fazekas
** libextract, 
174 18 Gyorgy Fazekas
** COMirva, 
175 18 Gyorgy Fazekas
** MIRtoolbox, 
176 18 Gyorgy Fazekas
** Supercollider, 
177 18 Gyorgy Fazekas
** other frameworks
178 18 Gyorgy Fazekas
179 3 Gyorgy Fazekas
180 3 Gyorgy Fazekas
181 1 Gyorgy Fazekas
!http://www.isophonics.net/sites/isophonics.net/files/combined-frameworks.png!