annotate Syncopation models/basic_functions.py @ 22:2dbc09ca8013

Refactored KTH, not tested yet. Added conversion functions between note sequence and velocity sequence, and tostring functions. Renamed get_min_timeSpan into velocity_sequence_to_min_timetpan, so need to refactor that.
author Chunyang Song <csong@eecs.qmul.ac.uk>
date Thu, 09 Apr 2015 23:49:16 +0100
parents b6daddeefda9
children df1e7c378ee0
rev   line source
csong@2 1 # This python file is a collection of basic functions that are used in the syncopation models.
csong@2 2
csong@2 3 import math
csong@2 4
csong@2 5 # The concatenation function is used to concatenate two sequences.
csong@2 6 def concatenate(seq1,seq2):
csong@2 7 return seq1+seq2
csong@2 8
csong@2 9 # The repetition function is to concatenate a sequence to itself for 'times' number of times.
csong@2 10 def repeat(seq,times):
csong@2 11 new_seq = list(seq)
csong@2 12 if times >= 1:
csong@2 13 for i in range(times-1):
csong@2 14 new_seq = concatenate(new_seq,seq)
csong@2 15 else:
csong@2 16 #print 'Error: repetition times needs to be no less than 1.'
csong@2 17 new_seq = []
csong@2 18 return new_seq
csong@2 19
csong@2 20 # The subdivision function is to equally subdivide a sequence into 'divisor' number of segments.
csong@2 21 def subdivide(seq,divisor):
csong@2 22 subSeq = []
csong@2 23 if len(seq) % divisor != 0:
csong@2 24 print 'Error: rhythmic sequence cannot be equally subdivided.'
csong@2 25 else:
csong@2 26 n = len(seq) / divisor
csong@2 27 start , end = 0, n
csong@2 28 for i in range(divisor):
csong@2 29 subSeq.append(seq[start : end])
csong@2 30 start = end
csong@2 31 end = end + n
csong@2 32 return subSeq
csong@2 33
csong@2 34
csong@2 35 # The ceiling function is to round each number inside a sequence up to its nearest integer.
csong@2 36 def ceiling(seq):
csong@2 37 seq_ceil = []
csong@2 38 for s in seq:
csong@2 39 seq_ceil.append(int(math.ceil(s)))
csong@2 40 return seq_ceil
csong@2 41
csong@2 42 # The find_divisor function returns a list of all possible divisors for a length of sequence.
csong@2 43 def find_divisor(number):
csong@2 44 divisors = [1]
csong@2 45 for i in range(2,number+1):
csong@2 46 if number%i ==0:
csong@2 47 divisors.append(i)
csong@2 48 return divisors
csong@2 49
csong@2 50 # The find_divisor function returns a list of all possible divisors for a length of sequence.
csong@2 51 def find_prime_factors(number):
csong@20 52 primeFactors = find_divisor(number)
csong@2 53
csong@20 54 # remove 1 because 1 is not prime number
csong@20 55 del primeFactors[0]
csong@2 56
csong@20 57 # reversely traverse all the divisors list and once find a non-prime then delete
csong@20 58 for i in range(len(primeFactors)-1,0,-1):
csong@20 59 # print primeFactors[i], is_prime(primeFactors[i])
csong@20 60 if not is_prime(primeFactors[i]):
csong@20 61 del primeFactors[i]
csong@2 62
csong@20 63 return primeFactors
csong@20 64
csong@20 65 def is_prime(number):
csong@20 66 isPrime = True
csong@20 67 # 0 or 1 is not prime numbers
csong@20 68 if number < 2:
csong@20 69 isPrime = False
csong@20 70 # 2 is the only even prime number
csong@20 71 elif number == 2:
csong@20 72 pass
csong@20 73 # all the other even numbers are non-prime
csong@20 74 elif number % 2 == 0:
csong@20 75 isPrime = False
csong@20 76 else:
csong@20 77 for odd in range(3, int(math.sqrt(number) + 1), 2):
csong@20 78 if number % odd == 0:
csong@20 79 isPrime = False
csong@20 80 return isPrime
csong@2 81
csong@22 82 # convert a velocity sequence to its minimum time-span representation
csong@22 83 def velocity_sequence_to_min_timetpan(velocitySequence):
csong@22 84 minTimeSpanVelocitySeq = [1]
csong@22 85 for divisors in find_divisor(len(velocitySequence)):
csong@22 86 segments = subdivide(velocitySequence,divisors)
csong@2 87 if len(segments)!=0:
csong@22 88 del minTimeSpanSequence[:]
csong@2 89 for s in segments:
csong@22 90 minTimeSpanVelocitySeq.append(s[0])
csong@22 91 if sum(minTimeSpanVelocitySeq) == sum(velocitySequence):
csong@2 92 break
csong@22 93 return minTimeSpanVelocitySeq
csong@2 94
csong@22 95 # convert a note sequence to its minimum time-span representation
csong@22 96 def note_sequence_to_min_timespan(noteSequence, barTicks):
csong@22 97 barBinaryArray = [0]*barTicks
csong@22 98 for note in noteSequence:
csong@22 99 # mark note_on event (i.e. startTime) and note_off event (i.e. endTime = startTime + duration) as 1 in the barBinaryArray
csong@22 100 barBinaryArray[note[0]] = 1
csong@22 101 barBinaryArray[note[0]+note[1]] = 1
csong@22 102
csong@22 103 # convert the barBinaryArray to its minimum time-span representation
csong@22 104 minBarBinaryArray = velocitySequence_to_min_timeSpan(barBinaryArray)
csong@22 105 delta_t = len(barBinaryArray)/len(minBarBinaryArray)
csong@22 106
csong@22 107 # scale the startTime and duration of each note by delta_t
csong@22 108 for note in noteSequence:
csong@22 109 note[0] = note[0]/delta_t
csong@22 110 note[1] = note[1]/delta_t
csong@22 111
csong@22 112 return noteSequence
csong@22 113
csong@22 114
csong@22 115
csong@22 116 # get_note_indices returns all the indices of all the notes in this velocity_sequence
csong@22 117 def get_note_indices(velocitySequence):
csong@20 118 noteIndices = []
csong@2 119
csong@22 120 for index in range(len(velocitySequence)):
csong@22 121 if velocitySequence[index] != 0:
csong@20 122 noteIndices.append(index)
csong@2 123
csong@20 124 return noteIndices
csong@2 125
csong@22 126
csong@2 127 # The get_H returns a sequence of metrical weight for a certain metrical level (horizontal),
csong@2 128 # given the sequence of metrical weights in a hierarchy (vertical) and a sequence of subdivisions.
csong@19 129 def get_H(weightSequence,subdivisionSequence, level):
csong@2 130 H = []
csong@2 131 #print len(weight_seq), len(subdivision_seq), level
csong@19 132 if (level <= len(subdivisionSequence)-1) and (level <= len(weightSequence)-1):
csong@2 133 if level == 0:
csong@19 134 H = repeat([weightSequence[0]],subdivisionSequence[0])
csong@2 135 else:
csong@19 136 H_pre = get_H(weightSequence,subdivisionSequence,level-1)
csong@2 137 for h in H_pre:
csong@19 138 H = concatenate(H, concatenate([h], repeat([weightSequence[level]],subdivisionSequence[level]-1)))
csong@2 139 else:
csong@2 140 print 'Error: a subdivision factor or metrical weight is not defined for the request metrical level.'
csong@2 141 return H
csong@2 142
csong@22 143
csong@22 144 def calculate_bar_ticks(numerator, denominator, ticksPerQuarter):
csong@21 145 return (numerator * ticksPerQuarter *4) / denominator
csong@21 146
csong@22 147
csong@22 148 def get_rhythm_category(velocitySequence, subdivisionSequence):
csong@22 149 '''
csong@22 150 The get_rhythm_category function is used to detect rhythm category: monorhythm or polyrhythm.
csong@22 151 For monorhythms, all prime factors of the length of minimum time-span representation of this sequence are
csong@22 152 elements of its subdivision_seq, otherwise it is polyrhythm;
csong@22 153 e.g. prime_factors of polyrhythm 100100101010 in 4/4 is [2,3] but subdivision_seq = [1,2,2] for 4/4
csong@22 154 '''
csong@22 155 rhythmCategory = 'mono'
csong@22 156 for f in find_prime_factors(len(get_min_timeSpan(velocitySequence))):
csong@22 157 if not (f in subdivisionSequence):
csong@22 158 rhythmCategory = 'poly'
csong@22 159 break
csong@22 160 return rhythmCategory
csong@22 161
csong@22 162
csong@22 163 def string_to_sequence(inputString):
csong@22 164 return map(int, inputString.split(','))
csong@22 165
csong@19 166 # # The get_subdivision_seq function returns the subdivision sequence of several common time-signatures defined by GTTM,
csong@19 167 # # or ask for the top three level of subdivision_seq manually set by the user.
csong@19 168 # def get_subdivision_seq(timesig, L_max):
csong@19 169 # subdivision_seq = []
csong@2 170
csong@19 171 # if timesig == '2/4' or timesig == '4/4':
csong@19 172 # subdivision_seq = [1,2,2]
csong@19 173 # elif timesig == '3/4' or timesig == '3/8':
csong@19 174 # subdivision_seq = [1,3,2]
csong@19 175 # elif timesig == '6/8':
csong@19 176 # subdivision_seq = [1,2,3]
csong@19 177 # elif timesig == '9/8':
csong@19 178 # subdivision_seq = [1,3,3]
csong@19 179 # elif timesig == '12/8':
csong@19 180 # subdivision_seq = [1,4,3]
csong@19 181 # elif timesig == '5/4' or timesig == '5/8':
csong@19 182 # subdivision_seq = [1,5,2]
csong@19 183 # elif timesig == '7/4' or timesig == '7/8':
csong@19 184 # subdivision_seq = [1,7,2]
csong@19 185 # elif timesig == '11/4' or timesig == '11/8':
csong@19 186 # subdivision_seq = [1,11,2]
csong@19 187 # else:
csong@19 188 # print 'Time-signature',timesig,'is undefined. Please indicate subdivision sequence for this requested time-signature, e.g. [1,2,2] for 4/4 meter.'
csong@19 189 # for i in range(3):
csong@19 190 # s = int(input('Enter the subdivision factor at metrical level '+str(i)+':'))
csong@19 191 # subdivision_seq.append(s)
csong@2 192
csong@19 193 # if L_max > 2:
csong@19 194 # subdivision_seq = subdivision_seq + [2]*(L_max-2)
csong@19 195 # else:
csong@19 196 # subdivision_seq = subdivision_seq[0:L_max+1]
csong@2 197
csong@19 198 # return subdivision_seq
csong@2 199
csong@9 200
csong@2 201 # The split_by_bar function seperates the score representation of rhythm by bar lines,
csong@2 202 # resulting in a list representingbar-by-bar rhythm sequence,
csong@2 203 # e.g. rhythm = ['|',[ts1,td1,v1], [ts2,td2,v2], '|',[ts3,td3,v3],'|'...]
csong@2 204 # rhythm_bybar = [ [ [ts1,td1,v1], [ts2,td2,v2] ], [ [ts3,td3,v3] ], [...]]
csong@2 205 # def split_by_bar(rhythm):
csong@2 206 # rhythm_bybar = []
csong@2 207 # bar_index = []
csong@2 208 # for index in range(len(rhythm)):
csong@2 209 # if rhythm[index] == '|':
csong@2 210
csong@2 211 # return rhythm_bybar
csong@2 212
csong@2 213 # def yseq_to_vseq(yseq):
csong@2 214 # vseq = []
csong@2 215
csong@2 216 # return vseq
csong@2 217
csong@2 218
csong@2 219 # # testing
csong@20 220 # print find_prime_factors(10)
csong@20 221 # print find_prime_factors(2)
csong@20 222 # print find_prime_factors(12)
csong@20 223
csong@20 224
csong@20 225 # print is_prime(1) # False
csong@20 226 # print is_prime(2) # True
csong@20 227 # print is_prime(3) # True
csong@20 228 # print is_prime(29) # True
csong@20 229 # print is_prime(345) # False
csong@20 230 # print is_prime(999979) # True
csong@20 231 # print is_prime(999981) # False