annotate Syncopation models/basic_functions.py @ 19:9030967a05f8

Refactored parameter_setter, basic_functions. Halfway fixing parameter argument in LHL model.
author csong <csong@eecs.qmul.ac.uk>
date Fri, 03 Apr 2015 22:57:27 +0100
parents 4fb9c00e4ef0
children b959c2acb927
rev   line source
csong@2 1 # This python file is a collection of basic functions that are used in the syncopation models.
csong@2 2
csong@2 3 import math
csong@2 4
csong@2 5 # The concatenation function is used to concatenate two sequences.
csong@2 6 def concatenate(seq1,seq2):
csong@2 7 return seq1+seq2
csong@2 8
csong@2 9 # The repetition function is to concatenate a sequence to itself for 'times' number of times.
csong@2 10 def repeat(seq,times):
csong@2 11 new_seq = list(seq)
csong@2 12 if times >= 1:
csong@2 13 for i in range(times-1):
csong@2 14 new_seq = concatenate(new_seq,seq)
csong@2 15 else:
csong@2 16 #print 'Error: repetition times needs to be no less than 1.'
csong@2 17 new_seq = []
csong@2 18 return new_seq
csong@2 19
csong@2 20 # The subdivision function is to equally subdivide a sequence into 'divisor' number of segments.
csong@2 21 def subdivide(seq,divisor):
csong@2 22 subSeq = []
csong@2 23 if len(seq) % divisor != 0:
csong@2 24 print 'Error: rhythmic sequence cannot be equally subdivided.'
csong@2 25 else:
csong@2 26 n = len(seq) / divisor
csong@2 27 start , end = 0, n
csong@2 28 for i in range(divisor):
csong@2 29 subSeq.append(seq[start : end])
csong@2 30 start = end
csong@2 31 end = end + n
csong@2 32 return subSeq
csong@2 33
csong@2 34
csong@2 35 # The ceiling function is to round each number inside a sequence up to its nearest integer.
csong@2 36 def ceiling(seq):
csong@2 37 seq_ceil = []
csong@2 38 for s in seq:
csong@2 39 seq_ceil.append(int(math.ceil(s)))
csong@2 40 return seq_ceil
csong@2 41
csong@2 42 # The find_divisor function returns a list of all possible divisors for a length of sequence.
csong@2 43 def find_divisor(number):
csong@2 44 divisors = [1]
csong@2 45 for i in range(2,number+1):
csong@2 46 if number%i ==0:
csong@2 47 divisors.append(i)
csong@2 48 return divisors
csong@2 49
csong@2 50 # The find_divisor function returns a list of all possible divisors for a length of sequence.
csong@2 51 def find_prime_factors(number):
csong@2 52 prime_factors = find_divisor(number)
csong@2 53
csong@2 54 def is_prime(num):
csong@2 55 if num < 2:
csong@2 56 return False
csong@2 57 if num == 2:
csong@2 58 return True
csong@2 59 else:
csong@2 60 for div in range(2,num):
csong@2 61 if num % div == 0:
csong@2 62 return False
csong@2 63 return True
csong@2 64
csong@2 65 for i in range(len(prime_factors)-1,0,-1):
csong@2 66 if is_prime(prime_factors[i]) == False:
csong@2 67 del prime_factors[i]
csong@2 68
csong@2 69 return prime_factors
csong@2 70
csong@2 71 # The min_timeSpan function searches for the shortest possible time-span representation for a sequence.
csong@2 72 def get_min_timeSpan(seq):
csong@2 73 min_ts = [1]
csong@2 74 for d in find_divisor(len(seq)):
csong@2 75 segments = subdivide(seq,d)
csong@2 76 if len(segments)!=0:
csong@2 77 del min_ts[:]
csong@2 78 for s in segments:
csong@2 79 min_ts.append(s[0])
csong@2 80 if sum(min_ts) == sum(seq):
csong@2 81 break
csong@2 82 return min_ts
csong@2 83
csong@2 84 # get_note_indices returns all the indices of all the notes in this sequence
csong@2 85 def get_note_indices(seq):
csong@2 86 note_indices = []
csong@2 87
csong@2 88 for index in range(len(seq)):
csong@2 89 if seq[index] != 0:
csong@2 90 note_indices.append(index)
csong@2 91
csong@2 92 return note_indices
csong@2 93
csong@2 94 # The get_H returns a sequence of metrical weight for a certain metrical level (horizontal),
csong@2 95 # given the sequence of metrical weights in a hierarchy (vertical) and a sequence of subdivisions.
csong@19 96 def get_H(weightSequence,subdivisionSequence, level):
csong@2 97 H = []
csong@2 98 #print len(weight_seq), len(subdivision_seq), level
csong@19 99 if (level <= len(subdivisionSequence)-1) and (level <= len(weightSequence)-1):
csong@2 100 if level == 0:
csong@19 101 H = repeat([weightSequence[0]],subdivisionSequence[0])
csong@2 102 else:
csong@19 103 H_pre = get_H(weightSequence,subdivisionSequence,level-1)
csong@2 104 for h in H_pre:
csong@19 105 H = concatenate(H, concatenate([h], repeat([weightSequence[level]],subdivisionSequence[level]-1)))
csong@2 106 else:
csong@2 107 print 'Error: a subdivision factor or metrical weight is not defined for the request metrical level.'
csong@2 108 return H
csong@2 109
csong@19 110 # # The get_subdivision_seq function returns the subdivision sequence of several common time-signatures defined by GTTM,
csong@19 111 # # or ask for the top three level of subdivision_seq manually set by the user.
csong@19 112 # def get_subdivision_seq(timesig, L_max):
csong@19 113 # subdivision_seq = []
csong@2 114
csong@19 115 # if timesig == '2/4' or timesig == '4/4':
csong@19 116 # subdivision_seq = [1,2,2]
csong@19 117 # elif timesig == '3/4' or timesig == '3/8':
csong@19 118 # subdivision_seq = [1,3,2]
csong@19 119 # elif timesig == '6/8':
csong@19 120 # subdivision_seq = [1,2,3]
csong@19 121 # elif timesig == '9/8':
csong@19 122 # subdivision_seq = [1,3,3]
csong@19 123 # elif timesig == '12/8':
csong@19 124 # subdivision_seq = [1,4,3]
csong@19 125 # elif timesig == '5/4' or timesig == '5/8':
csong@19 126 # subdivision_seq = [1,5,2]
csong@19 127 # elif timesig == '7/4' or timesig == '7/8':
csong@19 128 # subdivision_seq = [1,7,2]
csong@19 129 # elif timesig == '11/4' or timesig == '11/8':
csong@19 130 # subdivision_seq = [1,11,2]
csong@19 131 # else:
csong@19 132 # print 'Time-signature',timesig,'is undefined. Please indicate subdivision sequence for this requested time-signature, e.g. [1,2,2] for 4/4 meter.'
csong@19 133 # for i in range(3):
csong@19 134 # s = int(input('Enter the subdivision factor at metrical level '+str(i)+':'))
csong@19 135 # subdivision_seq.append(s)
csong@2 136
csong@19 137 # if L_max > 2:
csong@19 138 # subdivision_seq = subdivision_seq + [2]*(L_max-2)
csong@19 139 # else:
csong@19 140 # subdivision_seq = subdivision_seq[0:L_max+1]
csong@2 141
csong@19 142 # return subdivision_seq
csong@2 143
csong@9 144
csong@13 145 def get_rhythm_category(velocitySequence, subdivisionSequence):
csong@13 146 '''
csong@13 147 The get_rhythm_category function is used to detect rhythm category: monorhythm or polyrhythm.
csong@13 148 For monorhythms, all prime factors of the length of minimum time-span representation of this sequence are
csong@13 149 elements of its subdivision_seq, otherwise it is polyrhythm;
csong@13 150 e.g. prime_factors of polyrhythm 100100101010 in 4/4 is [2,3] but subdivision_seq = [1,2,2] for 4/4
csong@13 151 '''
csong@13 152 rhythmCategory = 'mono'
csong@13 153 for f in find_prime_factors(len(get_min_timeSpan(velocitySequence))):
csong@13 154 if not (f in subdivisionSequence):
csong@13 155 rhythmCategory = 'poly'
csong@9 156 break
csong@13 157 return rhythmCategory
csong@13 158
csong@13 159 def string_to_sequence(inputString):
csong@13 160 return map(int, inputString.split(','))
csong@9 161
csong@9 162
csong@2 163 # The split_by_bar function seperates the score representation of rhythm by bar lines,
csong@2 164 # resulting in a list representingbar-by-bar rhythm sequence,
csong@2 165 # e.g. rhythm = ['|',[ts1,td1,v1], [ts2,td2,v2], '|',[ts3,td3,v3],'|'...]
csong@2 166 # rhythm_bybar = [ [ [ts1,td1,v1], [ts2,td2,v2] ], [ [ts3,td3,v3] ], [...]]
csong@2 167 # def split_by_bar(rhythm):
csong@2 168 # rhythm_bybar = []
csong@2 169 # bar_index = []
csong@2 170 # for index in range(len(rhythm)):
csong@2 171 # if rhythm[index] == '|':
csong@2 172
csong@2 173 # return rhythm_bybar
csong@2 174
csong@2 175 # def yseq_to_vseq(yseq):
csong@2 176 # vseq = []
csong@2 177
csong@2 178 # return vseq
csong@2 179
csong@2 180
csong@2 181 # # testing
csong@2 182 # print find_prime_factors(10)