csong@2
|
1 # This python file is a collection of basic functions that are used in the syncopation models.
|
csong@2
|
2
|
csong@2
|
3 import math
|
csong@2
|
4
|
csong@2
|
5 # The concatenation function is used to concatenate two sequences.
|
csong@2
|
6 def concatenate(seq1,seq2):
|
csong@2
|
7 return seq1+seq2
|
csong@2
|
8
|
csong@2
|
9 # The repetition function is to concatenate a sequence to itself for 'times' number of times.
|
csong@2
|
10 def repeat(seq,times):
|
csong@2
|
11 new_seq = list(seq)
|
csong@2
|
12 if times >= 1:
|
csong@2
|
13 for i in range(times-1):
|
csong@2
|
14 new_seq = concatenate(new_seq,seq)
|
csong@2
|
15 else:
|
csong@2
|
16 #print 'Error: repetition times needs to be no less than 1.'
|
csong@2
|
17 new_seq = []
|
csong@2
|
18 return new_seq
|
csong@2
|
19
|
csong@2
|
20 # The subdivision function is to equally subdivide a sequence into 'divisor' number of segments.
|
csong@2
|
21 def subdivide(seq,divisor):
|
csong@2
|
22 subSeq = []
|
csong@2
|
23 if len(seq) % divisor != 0:
|
csong@2
|
24 print 'Error: rhythmic sequence cannot be equally subdivided.'
|
csong@2
|
25 else:
|
csong@2
|
26 n = len(seq) / divisor
|
csong@2
|
27 start , end = 0, n
|
csong@2
|
28 for i in range(divisor):
|
csong@2
|
29 subSeq.append(seq[start : end])
|
csong@2
|
30 start = end
|
csong@2
|
31 end = end + n
|
csong@2
|
32 return subSeq
|
csong@2
|
33
|
csong@2
|
34
|
csong@2
|
35 # The ceiling function is to round each number inside a sequence up to its nearest integer.
|
csong@2
|
36 def ceiling(seq):
|
csong@2
|
37 seq_ceil = []
|
csong@2
|
38 for s in seq:
|
csong@2
|
39 seq_ceil.append(int(math.ceil(s)))
|
csong@2
|
40 return seq_ceil
|
csong@2
|
41
|
csong@2
|
42 # The find_divisor function returns a list of all possible divisors for a length of sequence.
|
csong@2
|
43 def find_divisor(number):
|
csong@2
|
44 divisors = [1]
|
csong@2
|
45 for i in range(2,number+1):
|
csong@2
|
46 if number%i ==0:
|
csong@2
|
47 divisors.append(i)
|
csong@2
|
48 return divisors
|
csong@2
|
49
|
csong@2
|
50 # The find_divisor function returns a list of all possible divisors for a length of sequence.
|
csong@2
|
51 def find_prime_factors(number):
|
csong@20
|
52 primeFactors = find_divisor(number)
|
csong@2
|
53
|
csong@20
|
54 # remove 1 because 1 is not prime number
|
csong@20
|
55 del primeFactors[0]
|
csong@2
|
56
|
csong@20
|
57 # reversely traverse all the divisors list and once find a non-prime then delete
|
csong@20
|
58 for i in range(len(primeFactors)-1,0,-1):
|
csong@20
|
59 # print primeFactors[i], is_prime(primeFactors[i])
|
csong@20
|
60 if not is_prime(primeFactors[i]):
|
csong@20
|
61 del primeFactors[i]
|
csong@2
|
62
|
csong@20
|
63 return primeFactors
|
csong@20
|
64
|
csong@20
|
65 def is_prime(number):
|
csong@20
|
66 isPrime = True
|
csong@20
|
67 # 0 or 1 is not prime numbers
|
csong@20
|
68 if number < 2:
|
csong@20
|
69 isPrime = False
|
csong@20
|
70 # 2 is the only even prime number
|
csong@20
|
71 elif number == 2:
|
csong@20
|
72 pass
|
csong@20
|
73 # all the other even numbers are non-prime
|
csong@20
|
74 elif number % 2 == 0:
|
csong@20
|
75 isPrime = False
|
csong@20
|
76 else:
|
csong@20
|
77 for odd in range(3, int(math.sqrt(number) + 1), 2):
|
csong@20
|
78 if number % odd == 0:
|
csong@20
|
79 isPrime = False
|
csong@20
|
80 return isPrime
|
csong@2
|
81
|
csong@2
|
82 # The min_timeSpan function searches for the shortest possible time-span representation for a sequence.
|
csong@2
|
83 def get_min_timeSpan(seq):
|
csong@20
|
84 minTimeSpan = [1]
|
csong@2
|
85 for d in find_divisor(len(seq)):
|
csong@2
|
86 segments = subdivide(seq,d)
|
csong@2
|
87 if len(segments)!=0:
|
csong@20
|
88 del minTimeSpan[:]
|
csong@2
|
89 for s in segments:
|
csong@20
|
90 minTimeSpan.append(s[0])
|
csong@20
|
91 if sum(minTimeSpan) == sum(seq):
|
csong@2
|
92 break
|
csong@20
|
93 return minTimeSpan
|
csong@2
|
94
|
csong@2
|
95 # get_note_indices returns all the indices of all the notes in this sequence
|
csong@20
|
96 def get_note_indices(sequence):
|
csong@20
|
97 noteIndices = []
|
csong@2
|
98
|
csong@20
|
99 for index in range(len(sequence)):
|
csong@20
|
100 if sequence[index] != 0:
|
csong@20
|
101 noteIndices.append(index)
|
csong@2
|
102
|
csong@20
|
103 return noteIndices
|
csong@2
|
104
|
csong@2
|
105 # The get_H returns a sequence of metrical weight for a certain metrical level (horizontal),
|
csong@2
|
106 # given the sequence of metrical weights in a hierarchy (vertical) and a sequence of subdivisions.
|
csong@19
|
107 def get_H(weightSequence,subdivisionSequence, level):
|
csong@2
|
108 H = []
|
csong@2
|
109 #print len(weight_seq), len(subdivision_seq), level
|
csong@19
|
110 if (level <= len(subdivisionSequence)-1) and (level <= len(weightSequence)-1):
|
csong@2
|
111 if level == 0:
|
csong@19
|
112 H = repeat([weightSequence[0]],subdivisionSequence[0])
|
csong@2
|
113 else:
|
csong@19
|
114 H_pre = get_H(weightSequence,subdivisionSequence,level-1)
|
csong@2
|
115 for h in H_pre:
|
csong@19
|
116 H = concatenate(H, concatenate([h], repeat([weightSequence[level]],subdivisionSequence[level]-1)))
|
csong@2
|
117 else:
|
csong@2
|
118 print 'Error: a subdivision factor or metrical weight is not defined for the request metrical level.'
|
csong@2
|
119 return H
|
csong@2
|
120
|
csong@19
|
121 # # The get_subdivision_seq function returns the subdivision sequence of several common time-signatures defined by GTTM,
|
csong@19
|
122 # # or ask for the top three level of subdivision_seq manually set by the user.
|
csong@19
|
123 # def get_subdivision_seq(timesig, L_max):
|
csong@19
|
124 # subdivision_seq = []
|
csong@2
|
125
|
csong@19
|
126 # if timesig == '2/4' or timesig == '4/4':
|
csong@19
|
127 # subdivision_seq = [1,2,2]
|
csong@19
|
128 # elif timesig == '3/4' or timesig == '3/8':
|
csong@19
|
129 # subdivision_seq = [1,3,2]
|
csong@19
|
130 # elif timesig == '6/8':
|
csong@19
|
131 # subdivision_seq = [1,2,3]
|
csong@19
|
132 # elif timesig == '9/8':
|
csong@19
|
133 # subdivision_seq = [1,3,3]
|
csong@19
|
134 # elif timesig == '12/8':
|
csong@19
|
135 # subdivision_seq = [1,4,3]
|
csong@19
|
136 # elif timesig == '5/4' or timesig == '5/8':
|
csong@19
|
137 # subdivision_seq = [1,5,2]
|
csong@19
|
138 # elif timesig == '7/4' or timesig == '7/8':
|
csong@19
|
139 # subdivision_seq = [1,7,2]
|
csong@19
|
140 # elif timesig == '11/4' or timesig == '11/8':
|
csong@19
|
141 # subdivision_seq = [1,11,2]
|
csong@19
|
142 # else:
|
csong@19
|
143 # print 'Time-signature',timesig,'is undefined. Please indicate subdivision sequence for this requested time-signature, e.g. [1,2,2] for 4/4 meter.'
|
csong@19
|
144 # for i in range(3):
|
csong@19
|
145 # s = int(input('Enter the subdivision factor at metrical level '+str(i)+':'))
|
csong@19
|
146 # subdivision_seq.append(s)
|
csong@2
|
147
|
csong@19
|
148 # if L_max > 2:
|
csong@19
|
149 # subdivision_seq = subdivision_seq + [2]*(L_max-2)
|
csong@19
|
150 # else:
|
csong@19
|
151 # subdivision_seq = subdivision_seq[0:L_max+1]
|
csong@2
|
152
|
csong@19
|
153 # return subdivision_seq
|
csong@2
|
154
|
csong@9
|
155
|
csong@13
|
156 def get_rhythm_category(velocitySequence, subdivisionSequence):
|
csong@13
|
157 '''
|
csong@13
|
158 The get_rhythm_category function is used to detect rhythm category: monorhythm or polyrhythm.
|
csong@13
|
159 For monorhythms, all prime factors of the length of minimum time-span representation of this sequence are
|
csong@13
|
160 elements of its subdivision_seq, otherwise it is polyrhythm;
|
csong@13
|
161 e.g. prime_factors of polyrhythm 100100101010 in 4/4 is [2,3] but subdivision_seq = [1,2,2] for 4/4
|
csong@13
|
162 '''
|
csong@13
|
163 rhythmCategory = 'mono'
|
csong@13
|
164 for f in find_prime_factors(len(get_min_timeSpan(velocitySequence))):
|
csong@13
|
165 if not (f in subdivisionSequence):
|
csong@13
|
166 rhythmCategory = 'poly'
|
csong@9
|
167 break
|
csong@13
|
168 return rhythmCategory
|
csong@13
|
169
|
csong@13
|
170 def string_to_sequence(inputString):
|
csong@13
|
171 return map(int, inputString.split(','))
|
csong@9
|
172
|
csong@9
|
173
|
csong@2
|
174 # The split_by_bar function seperates the score representation of rhythm by bar lines,
|
csong@2
|
175 # resulting in a list representingbar-by-bar rhythm sequence,
|
csong@2
|
176 # e.g. rhythm = ['|',[ts1,td1,v1], [ts2,td2,v2], '|',[ts3,td3,v3],'|'...]
|
csong@2
|
177 # rhythm_bybar = [ [ [ts1,td1,v1], [ts2,td2,v2] ], [ [ts3,td3,v3] ], [...]]
|
csong@2
|
178 # def split_by_bar(rhythm):
|
csong@2
|
179 # rhythm_bybar = []
|
csong@2
|
180 # bar_index = []
|
csong@2
|
181 # for index in range(len(rhythm)):
|
csong@2
|
182 # if rhythm[index] == '|':
|
csong@2
|
183
|
csong@2
|
184 # return rhythm_bybar
|
csong@2
|
185
|
csong@2
|
186 # def yseq_to_vseq(yseq):
|
csong@2
|
187 # vseq = []
|
csong@2
|
188
|
csong@2
|
189 # return vseq
|
csong@2
|
190
|
csong@2
|
191
|
csong@2
|
192 # # testing
|
csong@20
|
193 # print find_prime_factors(10)
|
csong@20
|
194 # print find_prime_factors(2)
|
csong@20
|
195 # print find_prime_factors(12)
|
csong@20
|
196
|
csong@20
|
197
|
csong@20
|
198 # print is_prime(1) # False
|
csong@20
|
199 # print is_prime(2) # True
|
csong@20
|
200 # print is_prime(3) # True
|
csong@20
|
201 # print is_prime(29) # True
|
csong@20
|
202 # print is_prime(345) # False
|
csong@20
|
203 # print is_prime(999979) # True
|
csong@20
|
204 # print is_prime(999981) # False |