annotate src/fftw-3.3.8/genfft/complex.ml @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
rev   line source
cannam@167 1 (*
cannam@167 2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
cannam@167 3 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@167 4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@167 5 *
cannam@167 6 * This program is free software; you can redistribute it and/or modify
cannam@167 7 * it under the terms of the GNU General Public License as published by
cannam@167 8 * the Free Software Foundation; either version 2 of the License, or
cannam@167 9 * (at your option) any later version.
cannam@167 10 *
cannam@167 11 * This program is distributed in the hope that it will be useful,
cannam@167 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@167 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@167 14 * GNU General Public License for more details.
cannam@167 15 *
cannam@167 16 * You should have received a copy of the GNU General Public License
cannam@167 17 * along with this program; if not, write to the Free Software
cannam@167 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@167 19 *
cannam@167 20 *)
cannam@167 21
cannam@167 22 (* abstraction layer for complex operations *)
cannam@167 23 open Littlesimp
cannam@167 24 open Expr
cannam@167 25
cannam@167 26 (* type of complex expressions *)
cannam@167 27 type expr = CE of Expr.expr * Expr.expr
cannam@167 28
cannam@167 29 let two = CE (makeNum Number.two, makeNum Number.zero)
cannam@167 30 let one = CE (makeNum Number.one, makeNum Number.zero)
cannam@167 31 let i = CE (makeNum Number.zero, makeNum Number.one)
cannam@167 32 let zero = CE (makeNum Number.zero, makeNum Number.zero)
cannam@167 33 let make (r, i) = CE (r, i)
cannam@167 34
cannam@167 35 let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b)
cannam@167 36
cannam@167 37 let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)),
cannam@167 38 makeNum Number.zero)
cannam@167 39
cannam@167 40 let inverse_int_sqrt n =
cannam@167 41 CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))),
cannam@167 42 makeNum Number.zero)
cannam@167 43 let int_sqrt n =
cannam@167 44 CE (makeNum (Number.sqrt (Number.of_int n)),
cannam@167 45 makeNum Number.zero)
cannam@167 46
cannam@167 47 let nan x = CE (NaN x, makeNum Number.zero)
cannam@167 48
cannam@167 49 let half = inverse_int 2
cannam@167 50
cannam@167 51 let times3x3 (CE (a, b)) (CE (c, d)) =
cannam@167 52 CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]);
cannam@167 53 makeTimes (b, makePlus [c; makeUminus (d)])],
cannam@167 54 makePlus [makeTimes (a, makePlus [c; d]);
cannam@167 55 makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))])
cannam@167 56
cannam@167 57 let times (CE (a, b)) (CE (c, d)) =
cannam@167 58 if not !Magic.threemult then
cannam@167 59 CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))],
cannam@167 60 makePlus [makeTimes (a, d); makeTimes (b, c)])
cannam@167 61 else if is_constant c && is_constant d then
cannam@167 62 times3x3 (CE (a, b)) (CE (c, d))
cannam@167 63 else (* hope a and b are constant expressions *)
cannam@167 64 times3x3 (CE (c, d)) (CE (a, b))
cannam@167 65
cannam@167 66 let ctimes (CE (a, _)) (CE (c, _)) =
cannam@167 67 CE (CTimes (a, c), makeNum Number.zero)
cannam@167 68
cannam@167 69 let ctimesj (CE (a, _)) (CE (c, _)) =
cannam@167 70 CE (CTimesJ (a, c), makeNum Number.zero)
cannam@167 71
cannam@167 72 (* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *)
cannam@167 73 let exp n i =
cannam@167 74 let (c, s) = Number.cexp n i
cannam@167 75 in CE (makeNum c, makeNum s)
cannam@167 76
cannam@167 77 (* various trig functions evaluated at (2*pi*i/n * m) *)
cannam@167 78 let sec n m =
cannam@167 79 let (c, s) = Number.cexp n m
cannam@167 80 in CE (makeNum (Number.div Number.one c), makeNum Number.zero)
cannam@167 81 let csc n m =
cannam@167 82 let (c, s) = Number.cexp n m
cannam@167 83 in CE (makeNum (Number.div Number.one s), makeNum Number.zero)
cannam@167 84 let tan n m =
cannam@167 85 let (c, s) = Number.cexp n m
cannam@167 86 in CE (makeNum (Number.div s c), makeNum Number.zero)
cannam@167 87 let cot n m =
cannam@167 88 let (c, s) = Number.cexp n m
cannam@167 89 in CE (makeNum (Number.div c s), makeNum Number.zero)
cannam@167 90
cannam@167 91 (* complex sum *)
cannam@167 92 let plus a =
cannam@167 93 let rec unzip_complex = function
cannam@167 94 [] -> ([], [])
cannam@167 95 | ((CE (a, b)) :: s) ->
cannam@167 96 let (r,i) = unzip_complex s
cannam@167 97 in
cannam@167 98 (a::r), (b::i) in
cannam@167 99 let (c, d) = unzip_complex a in
cannam@167 100 CE (makePlus c, makePlus d)
cannam@167 101
cannam@167 102 (* extract real/imaginary *)
cannam@167 103 let real (CE (a, b)) = CE (a, makeNum Number.zero)
cannam@167 104 let imag (CE (a, b)) = CE (b, makeNum Number.zero)
cannam@167 105 let iimag (CE (a, b)) = CE (makeNum Number.zero, b)
cannam@167 106 let conj (CE (a, b)) = CE (a, makeUminus b)
cannam@167 107
cannam@167 108
cannam@167 109 (* abstraction of sum_{i=0}^{n-1} *)
cannam@167 110 let sigma a b f = plus (List.map f (Util.interval a b))
cannam@167 111
cannam@167 112 (* store and assignment operations *)
cannam@167 113 let store_real v (CE (a, b)) = Expr.Store (v, a)
cannam@167 114 let store_imag v (CE (a, b)) = Expr.Store (v, b)
cannam@167 115 let store (vr, vi) x = (store_real vr x, store_imag vi x)
cannam@167 116
cannam@167 117 let assign_real v (CE (a, b)) = Expr.Assign (v, a)
cannam@167 118 let assign_imag v (CE (a, b)) = Expr.Assign (v, b)
cannam@167 119 let assign (vr, vi) x = (assign_real vr x, assign_imag vi x)
cannam@167 120
cannam@167 121
cannam@167 122 (************************
cannam@167 123 shortcuts
cannam@167 124 ************************)
cannam@167 125 let (@*) = times
cannam@167 126 let (@+) a b = plus [a; b]
cannam@167 127 let (@-) a b = plus [a; uminus b]
cannam@167 128
cannam@167 129 (* type of complex signals *)
cannam@167 130 type signal = int -> expr
cannam@167 131
cannam@167 132 (* make a finite signal infinite *)
cannam@167 133 let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero
cannam@167 134
cannam@167 135 let hermitian n a =
cannam@167 136 Util.array n (fun i ->
cannam@167 137 if (i = 0) then real (a 0)
cannam@167 138 else if (i < n - i) then (a i)
cannam@167 139 else if (i > n - i) then conj (a (n - i))
cannam@167 140 else real (a i))
cannam@167 141
cannam@167 142 let antihermitian n a =
cannam@167 143 Util.array n (fun i ->
cannam@167 144 if (i = 0) then iimag (a 0)
cannam@167 145 else if (i < n - i) then (a i)
cannam@167 146 else if (i > n - i) then uminus (conj (a (n - i)))
cannam@167 147 else iimag (a i))