comparison src/fftw-3.3.8/genfft/complex.ml @ 167:bd3cc4d1df30

Add FFTW 3.3.8 source, and a Linux build
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 19 Nov 2019 14:52:55 +0000
parents
children
comparison
equal deleted inserted replaced
166:cbd6d7e562c7 167:bd3cc4d1df30
1 (*
2 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
3 * Copyright (c) 2003, 2007-14 Matteo Frigo
4 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 *)
21
22 (* abstraction layer for complex operations *)
23 open Littlesimp
24 open Expr
25
26 (* type of complex expressions *)
27 type expr = CE of Expr.expr * Expr.expr
28
29 let two = CE (makeNum Number.two, makeNum Number.zero)
30 let one = CE (makeNum Number.one, makeNum Number.zero)
31 let i = CE (makeNum Number.zero, makeNum Number.one)
32 let zero = CE (makeNum Number.zero, makeNum Number.zero)
33 let make (r, i) = CE (r, i)
34
35 let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b)
36
37 let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)),
38 makeNum Number.zero)
39
40 let inverse_int_sqrt n =
41 CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))),
42 makeNum Number.zero)
43 let int_sqrt n =
44 CE (makeNum (Number.sqrt (Number.of_int n)),
45 makeNum Number.zero)
46
47 let nan x = CE (NaN x, makeNum Number.zero)
48
49 let half = inverse_int 2
50
51 let times3x3 (CE (a, b)) (CE (c, d)) =
52 CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]);
53 makeTimes (b, makePlus [c; makeUminus (d)])],
54 makePlus [makeTimes (a, makePlus [c; d]);
55 makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))])
56
57 let times (CE (a, b)) (CE (c, d)) =
58 if not !Magic.threemult then
59 CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))],
60 makePlus [makeTimes (a, d); makeTimes (b, c)])
61 else if is_constant c && is_constant d then
62 times3x3 (CE (a, b)) (CE (c, d))
63 else (* hope a and b are constant expressions *)
64 times3x3 (CE (c, d)) (CE (a, b))
65
66 let ctimes (CE (a, _)) (CE (c, _)) =
67 CE (CTimes (a, c), makeNum Number.zero)
68
69 let ctimesj (CE (a, _)) (CE (c, _)) =
70 CE (CTimesJ (a, c), makeNum Number.zero)
71
72 (* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *)
73 let exp n i =
74 let (c, s) = Number.cexp n i
75 in CE (makeNum c, makeNum s)
76
77 (* various trig functions evaluated at (2*pi*i/n * m) *)
78 let sec n m =
79 let (c, s) = Number.cexp n m
80 in CE (makeNum (Number.div Number.one c), makeNum Number.zero)
81 let csc n m =
82 let (c, s) = Number.cexp n m
83 in CE (makeNum (Number.div Number.one s), makeNum Number.zero)
84 let tan n m =
85 let (c, s) = Number.cexp n m
86 in CE (makeNum (Number.div s c), makeNum Number.zero)
87 let cot n m =
88 let (c, s) = Number.cexp n m
89 in CE (makeNum (Number.div c s), makeNum Number.zero)
90
91 (* complex sum *)
92 let plus a =
93 let rec unzip_complex = function
94 [] -> ([], [])
95 | ((CE (a, b)) :: s) ->
96 let (r,i) = unzip_complex s
97 in
98 (a::r), (b::i) in
99 let (c, d) = unzip_complex a in
100 CE (makePlus c, makePlus d)
101
102 (* extract real/imaginary *)
103 let real (CE (a, b)) = CE (a, makeNum Number.zero)
104 let imag (CE (a, b)) = CE (b, makeNum Number.zero)
105 let iimag (CE (a, b)) = CE (makeNum Number.zero, b)
106 let conj (CE (a, b)) = CE (a, makeUminus b)
107
108
109 (* abstraction of sum_{i=0}^{n-1} *)
110 let sigma a b f = plus (List.map f (Util.interval a b))
111
112 (* store and assignment operations *)
113 let store_real v (CE (a, b)) = Expr.Store (v, a)
114 let store_imag v (CE (a, b)) = Expr.Store (v, b)
115 let store (vr, vi) x = (store_real vr x, store_imag vi x)
116
117 let assign_real v (CE (a, b)) = Expr.Assign (v, a)
118 let assign_imag v (CE (a, b)) = Expr.Assign (v, b)
119 let assign (vr, vi) x = (assign_real vr x, assign_imag vi x)
120
121
122 (************************
123 shortcuts
124 ************************)
125 let (@*) = times
126 let (@+) a b = plus [a; b]
127 let (@-) a b = plus [a; uminus b]
128
129 (* type of complex signals *)
130 type signal = int -> expr
131
132 (* make a finite signal infinite *)
133 let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero
134
135 let hermitian n a =
136 Util.array n (fun i ->
137 if (i = 0) then real (a 0)
138 else if (i < n - i) then (a i)
139 else if (i > n - i) then conj (a (n - i))
140 else real (a i))
141
142 let antihermitian n a =
143 Util.array n (fun i ->
144 if (i = 0) then iimag (a 0)
145 else if (i < n - i) then (a i)
146 else if (i > n - i) then uminus (conj (a (n - i)))
147 else iimag (a i))