cannam@167: (* cannam@167: * Copyright (c) 1997-1999 Massachusetts Institute of Technology cannam@167: * Copyright (c) 2003, 2007-14 Matteo Frigo cannam@167: * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology cannam@167: * cannam@167: * This program is free software; you can redistribute it and/or modify cannam@167: * it under the terms of the GNU General Public License as published by cannam@167: * the Free Software Foundation; either version 2 of the License, or cannam@167: * (at your option) any later version. cannam@167: * cannam@167: * This program is distributed in the hope that it will be useful, cannam@167: * but WITHOUT ANY WARRANTY; without even the implied warranty of cannam@167: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the cannam@167: * GNU General Public License for more details. cannam@167: * cannam@167: * You should have received a copy of the GNU General Public License cannam@167: * along with this program; if not, write to the Free Software cannam@167: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA cannam@167: * cannam@167: *) cannam@167: cannam@167: (* abstraction layer for complex operations *) cannam@167: open Littlesimp cannam@167: open Expr cannam@167: cannam@167: (* type of complex expressions *) cannam@167: type expr = CE of Expr.expr * Expr.expr cannam@167: cannam@167: let two = CE (makeNum Number.two, makeNum Number.zero) cannam@167: let one = CE (makeNum Number.one, makeNum Number.zero) cannam@167: let i = CE (makeNum Number.zero, makeNum Number.one) cannam@167: let zero = CE (makeNum Number.zero, makeNum Number.zero) cannam@167: let make (r, i) = CE (r, i) cannam@167: cannam@167: let uminus (CE (a, b)) = CE (makeUminus a, makeUminus b) cannam@167: cannam@167: let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)), cannam@167: makeNum Number.zero) cannam@167: cannam@167: let inverse_int_sqrt n = cannam@167: CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))), cannam@167: makeNum Number.zero) cannam@167: let int_sqrt n = cannam@167: CE (makeNum (Number.sqrt (Number.of_int n)), cannam@167: makeNum Number.zero) cannam@167: cannam@167: let nan x = CE (NaN x, makeNum Number.zero) cannam@167: cannam@167: let half = inverse_int 2 cannam@167: cannam@167: let times3x3 (CE (a, b)) (CE (c, d)) = cannam@167: CE (makePlus [makeTimes (c, makePlus [a; makeUminus (b)]); cannam@167: makeTimes (b, makePlus [c; makeUminus (d)])], cannam@167: makePlus [makeTimes (a, makePlus [c; d]); cannam@167: makeUminus(makeTimes (c, makePlus [a; makeUminus (b)]))]) cannam@167: cannam@167: let times (CE (a, b)) (CE (c, d)) = cannam@167: if not !Magic.threemult then cannam@167: CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))], cannam@167: makePlus [makeTimes (a, d); makeTimes (b, c)]) cannam@167: else if is_constant c && is_constant d then cannam@167: times3x3 (CE (a, b)) (CE (c, d)) cannam@167: else (* hope a and b are constant expressions *) cannam@167: times3x3 (CE (c, d)) (CE (a, b)) cannam@167: cannam@167: let ctimes (CE (a, _)) (CE (c, _)) = cannam@167: CE (CTimes (a, c), makeNum Number.zero) cannam@167: cannam@167: let ctimesj (CE (a, _)) (CE (c, _)) = cannam@167: CE (CTimesJ (a, c), makeNum Number.zero) cannam@167: cannam@167: (* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *) cannam@167: let exp n i = cannam@167: let (c, s) = Number.cexp n i cannam@167: in CE (makeNum c, makeNum s) cannam@167: cannam@167: (* various trig functions evaluated at (2*pi*i/n * m) *) cannam@167: let sec n m = cannam@167: let (c, s) = Number.cexp n m cannam@167: in CE (makeNum (Number.div Number.one c), makeNum Number.zero) cannam@167: let csc n m = cannam@167: let (c, s) = Number.cexp n m cannam@167: in CE (makeNum (Number.div Number.one s), makeNum Number.zero) cannam@167: let tan n m = cannam@167: let (c, s) = Number.cexp n m cannam@167: in CE (makeNum (Number.div s c), makeNum Number.zero) cannam@167: let cot n m = cannam@167: let (c, s) = Number.cexp n m cannam@167: in CE (makeNum (Number.div c s), makeNum Number.zero) cannam@167: cannam@167: (* complex sum *) cannam@167: let plus a = cannam@167: let rec unzip_complex = function cannam@167: [] -> ([], []) cannam@167: | ((CE (a, b)) :: s) -> cannam@167: let (r,i) = unzip_complex s cannam@167: in cannam@167: (a::r), (b::i) in cannam@167: let (c, d) = unzip_complex a in cannam@167: CE (makePlus c, makePlus d) cannam@167: cannam@167: (* extract real/imaginary *) cannam@167: let real (CE (a, b)) = CE (a, makeNum Number.zero) cannam@167: let imag (CE (a, b)) = CE (b, makeNum Number.zero) cannam@167: let iimag (CE (a, b)) = CE (makeNum Number.zero, b) cannam@167: let conj (CE (a, b)) = CE (a, makeUminus b) cannam@167: cannam@167: cannam@167: (* abstraction of sum_{i=0}^{n-1} *) cannam@167: let sigma a b f = plus (List.map f (Util.interval a b)) cannam@167: cannam@167: (* store and assignment operations *) cannam@167: let store_real v (CE (a, b)) = Expr.Store (v, a) cannam@167: let store_imag v (CE (a, b)) = Expr.Store (v, b) cannam@167: let store (vr, vi) x = (store_real vr x, store_imag vi x) cannam@167: cannam@167: let assign_real v (CE (a, b)) = Expr.Assign (v, a) cannam@167: let assign_imag v (CE (a, b)) = Expr.Assign (v, b) cannam@167: let assign (vr, vi) x = (assign_real vr x, assign_imag vi x) cannam@167: cannam@167: cannam@167: (************************ cannam@167: shortcuts cannam@167: ************************) cannam@167: let (@*) = times cannam@167: let (@+) a b = plus [a; b] cannam@167: let (@-) a b = plus [a; uminus b] cannam@167: cannam@167: (* type of complex signals *) cannam@167: type signal = int -> expr cannam@167: cannam@167: (* make a finite signal infinite *) cannam@167: let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero cannam@167: cannam@167: let hermitian n a = cannam@167: Util.array n (fun i -> cannam@167: if (i = 0) then real (a 0) cannam@167: else if (i < n - i) then (a i) cannam@167: else if (i > n - i) then conj (a (n - i)) cannam@167: else real (a i)) cannam@167: cannam@167: let antihermitian n a = cannam@167: Util.array n (fun i -> cannam@167: if (i = 0) then iimag (a 0) cannam@167: else if (i < n - i) then (a i) cannam@167: else if (i > n - i) then uminus (conj (a (n - i))) cannam@167: else iimag (a i))