cannam@167
|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
cannam@167
|
2 <html>
|
cannam@167
|
3 <!-- This manual is for FFTW
|
cannam@167
|
4 (version 3.3.8, 24 May 2018).
|
cannam@167
|
5
|
cannam@167
|
6 Copyright (C) 2003 Matteo Frigo.
|
cannam@167
|
7
|
cannam@167
|
8 Copyright (C) 2003 Massachusetts Institute of Technology.
|
cannam@167
|
9
|
cannam@167
|
10 Permission is granted to make and distribute verbatim copies of this
|
cannam@167
|
11 manual provided the copyright notice and this permission notice are
|
cannam@167
|
12 preserved on all copies.
|
cannam@167
|
13
|
cannam@167
|
14 Permission is granted to copy and distribute modified versions of this
|
cannam@167
|
15 manual under the conditions for verbatim copying, provided that the
|
cannam@167
|
16 entire resulting derived work is distributed under the terms of a
|
cannam@167
|
17 permission notice identical to this one.
|
cannam@167
|
18
|
cannam@167
|
19 Permission is granted to copy and distribute translations of this manual
|
cannam@167
|
20 into another language, under the above conditions for modified versions,
|
cannam@167
|
21 except that this permission notice may be stated in a translation
|
cannam@167
|
22 approved by the Free Software Foundation. -->
|
cannam@167
|
23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ -->
|
cannam@167
|
24 <head>
|
cannam@167
|
25 <title>FFTW 3.3.8: The 1d Real-data DFT</title>
|
cannam@167
|
26
|
cannam@167
|
27 <meta name="description" content="FFTW 3.3.8: The 1d Real-data DFT">
|
cannam@167
|
28 <meta name="keywords" content="FFTW 3.3.8: The 1d Real-data DFT">
|
cannam@167
|
29 <meta name="resource-type" content="document">
|
cannam@167
|
30 <meta name="distribution" content="global">
|
cannam@167
|
31 <meta name="Generator" content="makeinfo">
|
cannam@167
|
32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
|
cannam@167
|
33 <link href="index.html#Top" rel="start" title="Top">
|
cannam@167
|
34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
|
cannam@167
|
35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
|
cannam@167
|
36 <link href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" rel="up" title="What FFTW Really Computes">
|
cannam@167
|
37 <link href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" rel="next" title="1d Real-even DFTs (DCTs)">
|
cannam@167
|
38 <link href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029" rel="prev" title="The 1d Discrete Fourier Transform (DFT)">
|
cannam@167
|
39 <style type="text/css">
|
cannam@167
|
40 <!--
|
cannam@167
|
41 a.summary-letter {text-decoration: none}
|
cannam@167
|
42 blockquote.indentedblock {margin-right: 0em}
|
cannam@167
|
43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
|
cannam@167
|
44 blockquote.smallquotation {font-size: smaller}
|
cannam@167
|
45 div.display {margin-left: 3.2em}
|
cannam@167
|
46 div.example {margin-left: 3.2em}
|
cannam@167
|
47 div.lisp {margin-left: 3.2em}
|
cannam@167
|
48 div.smalldisplay {margin-left: 3.2em}
|
cannam@167
|
49 div.smallexample {margin-left: 3.2em}
|
cannam@167
|
50 div.smalllisp {margin-left: 3.2em}
|
cannam@167
|
51 kbd {font-style: oblique}
|
cannam@167
|
52 pre.display {font-family: inherit}
|
cannam@167
|
53 pre.format {font-family: inherit}
|
cannam@167
|
54 pre.menu-comment {font-family: serif}
|
cannam@167
|
55 pre.menu-preformatted {font-family: serif}
|
cannam@167
|
56 pre.smalldisplay {font-family: inherit; font-size: smaller}
|
cannam@167
|
57 pre.smallexample {font-size: smaller}
|
cannam@167
|
58 pre.smallformat {font-family: inherit; font-size: smaller}
|
cannam@167
|
59 pre.smalllisp {font-size: smaller}
|
cannam@167
|
60 span.nolinebreak {white-space: nowrap}
|
cannam@167
|
61 span.roman {font-family: initial; font-weight: normal}
|
cannam@167
|
62 span.sansserif {font-family: sans-serif; font-weight: normal}
|
cannam@167
|
63 ul.no-bullet {list-style: none}
|
cannam@167
|
64 -->
|
cannam@167
|
65 </style>
|
cannam@167
|
66
|
cannam@167
|
67
|
cannam@167
|
68 </head>
|
cannam@167
|
69
|
cannam@167
|
70 <body lang="en">
|
cannam@167
|
71 <a name="The-1d-Real_002ddata-DFT"></a>
|
cannam@167
|
72 <div class="header">
|
cannam@167
|
73 <p>
|
cannam@167
|
74 Next: <a href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" accesskey="n" rel="next">1d Real-even DFTs (DCTs)</a>, Previous: <a href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029" accesskey="p" rel="prev">The 1d Discrete Fourier Transform (DFT)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
|
cannam@167
|
75 </div>
|
cannam@167
|
76 <hr>
|
cannam@167
|
77 <a name="The-1d-Real_002ddata-DFT-1"></a>
|
cannam@167
|
78 <h4 class="subsection">4.8.2 The 1d Real-data DFT</h4>
|
cannam@167
|
79
|
cannam@167
|
80 <p>The real-input (r2c) DFT in FFTW computes the <em>forward</em> transform
|
cannam@167
|
81 <em>Y</em> of the size <code>n</code> real array <em>X</em>, exactly as defined
|
cannam@167
|
82 above, i.e.
|
cannam@167
|
83 <center><img src="equation-dft.png" align="top">.</center>
|
cannam@167
|
84 This output array <em>Y</em> can easily be shown to possess the
|
cannam@167
|
85 “Hermitian” symmetry
|
cannam@167
|
86 <a name="index-Hermitian-1"></a>
|
cannam@167
|
87 <i>Y<sub>k</sub> = Y<sub>n-k</sub></i><sup>*</sup>,
|
cannam@167
|
88 where we take <em>Y</em> to be periodic so that
|
cannam@167
|
89 <i>Y<sub>n</sub> = Y</i><sub>0</sub>.
|
cannam@167
|
90 </p>
|
cannam@167
|
91 <p>As a result of this symmetry, half of the output <em>Y</em> is redundant
|
cannam@167
|
92 (being the complex conjugate of the other half), and so the 1d r2c
|
cannam@167
|
93 transforms only output elements <em>0</em>…<em>n/2</em> of <em>Y</em>
|
cannam@167
|
94 (<em>n/2+1</em> complex numbers), where the division by <em>2</em> is
|
cannam@167
|
95 rounded down.
|
cannam@167
|
96 </p>
|
cannam@167
|
97 <p>Moreover, the Hermitian symmetry implies that
|
cannam@167
|
98 <i>Y</i><sub>0</sub>
|
cannam@167
|
99 and, if <em>n</em> is even, the
|
cannam@167
|
100 <i>Y</i><sub><i>n</i>/2</sub>
|
cannam@167
|
101 element, are purely real. So, for the <code>R2HC</code> r2r transform, the
|
cannam@167
|
102 halfcomplex format does not store the imaginary parts of these elements.
|
cannam@167
|
103 <a name="index-r2r-2"></a>
|
cannam@167
|
104 <a name="index-R2HC"></a>
|
cannam@167
|
105 <a name="index-halfcomplex-format-2"></a>
|
cannam@167
|
106 </p>
|
cannam@167
|
107
|
cannam@167
|
108 <p>The c2r and <code>H2RC</code> r2r transforms compute the backward DFT of the
|
cannam@167
|
109 <em>complex</em> array <em>X</em> with Hermitian symmetry, stored in the
|
cannam@167
|
110 r2c/<code>R2HC</code> output formats, respectively, where the backward
|
cannam@167
|
111 transform is defined exactly as for the complex case:
|
cannam@167
|
112 <center><img src="equation-idft.png" align="top">.</center>
|
cannam@167
|
113 The outputs <code>Y</code> of this transform can easily be seen to be purely
|
cannam@167
|
114 real, and are stored as an array of real numbers.
|
cannam@167
|
115 </p>
|
cannam@167
|
116 <a name="index-normalization-9"></a>
|
cannam@167
|
117 <p>Like FFTW’s complex DFT, these transforms are unnormalized. In other
|
cannam@167
|
118 words, applying the real-to-complex (forward) and then the
|
cannam@167
|
119 complex-to-real (backward) transform will multiply the input by
|
cannam@167
|
120 <em>n</em>.
|
cannam@167
|
121 </p>
|
cannam@167
|
122
|
cannam@167
|
123
|
cannam@167
|
124
|
cannam@167
|
125 </body>
|
cannam@167
|
126 </html>
|