Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.8/doc/html/The-1d-Real_002ddata-DFT.html @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.8/doc/html/The-1d-Real_002ddata-DFT.html Tue Nov 19 14:52:55 2019 +0000 @@ -0,0 +1,126 @@ +<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> +<html> +<!-- This manual is for FFTW +(version 3.3.8, 24 May 2018). + +Copyright (C) 2003 Matteo Frigo. + +Copyright (C) 2003 Massachusetts Institute of Technology. + +Permission is granted to make and distribute verbatim copies of this +manual provided the copyright notice and this permission notice are +preserved on all copies. + +Permission is granted to copy and distribute modified versions of this +manual under the conditions for verbatim copying, provided that the +entire resulting derived work is distributed under the terms of a +permission notice identical to this one. + +Permission is granted to copy and distribute translations of this manual +into another language, under the above conditions for modified versions, +except that this permission notice may be stated in a translation +approved by the Free Software Foundation. --> +<!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ --> +<head> +<title>FFTW 3.3.8: The 1d Real-data DFT</title> + +<meta name="description" content="FFTW 3.3.8: The 1d Real-data DFT"> +<meta name="keywords" content="FFTW 3.3.8: The 1d Real-data DFT"> +<meta name="resource-type" content="document"> +<meta name="distribution" content="global"> +<meta name="Generator" content="makeinfo"> +<meta http-equiv="Content-Type" content="text/html; charset=utf-8"> +<link href="index.html#Top" rel="start" title="Top"> +<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> +<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> +<link href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" rel="up" title="What FFTW Really Computes"> +<link href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" rel="next" title="1d Real-even DFTs (DCTs)"> +<link href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029" rel="prev" title="The 1d Discrete Fourier Transform (DFT)"> +<style type="text/css"> +<!-- +a.summary-letter {text-decoration: none} +blockquote.indentedblock {margin-right: 0em} +blockquote.smallindentedblock {margin-right: 0em; font-size: smaller} +blockquote.smallquotation {font-size: smaller} +div.display {margin-left: 3.2em} +div.example {margin-left: 3.2em} +div.lisp {margin-left: 3.2em} +div.smalldisplay {margin-left: 3.2em} +div.smallexample {margin-left: 3.2em} +div.smalllisp {margin-left: 3.2em} +kbd {font-style: oblique} +pre.display {font-family: inherit} +pre.format {font-family: inherit} +pre.menu-comment {font-family: serif} +pre.menu-preformatted {font-family: serif} +pre.smalldisplay {font-family: inherit; font-size: smaller} +pre.smallexample {font-size: smaller} +pre.smallformat {font-family: inherit; font-size: smaller} +pre.smalllisp {font-size: smaller} +span.nolinebreak {white-space: nowrap} +span.roman {font-family: initial; font-weight: normal} +span.sansserif {font-family: sans-serif; font-weight: normal} +ul.no-bullet {list-style: none} +--> +</style> + + +</head> + +<body lang="en"> +<a name="The-1d-Real_002ddata-DFT"></a> +<div class="header"> +<p> +Next: <a href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" accesskey="n" rel="next">1d Real-even DFTs (DCTs)</a>, Previous: <a href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029" accesskey="p" rel="prev">The 1d Discrete Fourier Transform (DFT)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> +</div> +<hr> +<a name="The-1d-Real_002ddata-DFT-1"></a> +<h4 class="subsection">4.8.2 The 1d Real-data DFT</h4> + +<p>The real-input (r2c) DFT in FFTW computes the <em>forward</em> transform +<em>Y</em> of the size <code>n</code> real array <em>X</em>, exactly as defined +above, i.e. +<center><img src="equation-dft.png" align="top">.</center> +This output array <em>Y</em> can easily be shown to possess the +“Hermitian” symmetry +<a name="index-Hermitian-1"></a> +<i>Y<sub>k</sub> = Y<sub>n-k</sub></i><sup>*</sup>, +where we take <em>Y</em> to be periodic so that +<i>Y<sub>n</sub> = Y</i><sub>0</sub>. +</p> +<p>As a result of this symmetry, half of the output <em>Y</em> is redundant +(being the complex conjugate of the other half), and so the 1d r2c +transforms only output elements <em>0</em>…<em>n/2</em> of <em>Y</em> +(<em>n/2+1</em> complex numbers), where the division by <em>2</em> is +rounded down. +</p> +<p>Moreover, the Hermitian symmetry implies that +<i>Y</i><sub>0</sub> +and, if <em>n</em> is even, the +<i>Y</i><sub><i>n</i>/2</sub> +element, are purely real. So, for the <code>R2HC</code> r2r transform, the +halfcomplex format does not store the imaginary parts of these elements. +<a name="index-r2r-2"></a> +<a name="index-R2HC"></a> +<a name="index-halfcomplex-format-2"></a> +</p> + +<p>The c2r and <code>H2RC</code> r2r transforms compute the backward DFT of the +<em>complex</em> array <em>X</em> with Hermitian symmetry, stored in the +r2c/<code>R2HC</code> output formats, respectively, where the backward +transform is defined exactly as for the complex case: +<center><img src="equation-idft.png" align="top">.</center> +The outputs <code>Y</code> of this transform can easily be seen to be purely +real, and are stored as an array of real numbers. +</p> +<a name="index-normalization-9"></a> +<p>Like FFTW’s complex DFT, these transforms are unnormalized. In other +words, applying the real-to-complex (forward) and then the +complex-to-real (backward) transform will multiply the input by +<em>n</em>. +</p> + + + +</body> +</html>