Mercurial > hg > sv-dependency-builds
comparison src/fftw-3.3.8/doc/html/The-1d-Real_002ddata-DFT.html @ 167:bd3cc4d1df30
Add FFTW 3.3.8 source, and a Linux build
author | Chris Cannam <cannam@all-day-breakfast.com> |
---|---|
date | Tue, 19 Nov 2019 14:52:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
166:cbd6d7e562c7 | 167:bd3cc4d1df30 |
---|---|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> | |
2 <html> | |
3 <!-- This manual is for FFTW | |
4 (version 3.3.8, 24 May 2018). | |
5 | |
6 Copyright (C) 2003 Matteo Frigo. | |
7 | |
8 Copyright (C) 2003 Massachusetts Institute of Technology. | |
9 | |
10 Permission is granted to make and distribute verbatim copies of this | |
11 manual provided the copyright notice and this permission notice are | |
12 preserved on all copies. | |
13 | |
14 Permission is granted to copy and distribute modified versions of this | |
15 manual under the conditions for verbatim copying, provided that the | |
16 entire resulting derived work is distributed under the terms of a | |
17 permission notice identical to this one. | |
18 | |
19 Permission is granted to copy and distribute translations of this manual | |
20 into another language, under the above conditions for modified versions, | |
21 except that this permission notice may be stated in a translation | |
22 approved by the Free Software Foundation. --> | |
23 <!-- Created by GNU Texinfo 6.3, http://www.gnu.org/software/texinfo/ --> | |
24 <head> | |
25 <title>FFTW 3.3.8: The 1d Real-data DFT</title> | |
26 | |
27 <meta name="description" content="FFTW 3.3.8: The 1d Real-data DFT"> | |
28 <meta name="keywords" content="FFTW 3.3.8: The 1d Real-data DFT"> | |
29 <meta name="resource-type" content="document"> | |
30 <meta name="distribution" content="global"> | |
31 <meta name="Generator" content="makeinfo"> | |
32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | |
33 <link href="index.html#Top" rel="start" title="Top"> | |
34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index"> | |
35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents"> | |
36 <link href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" rel="up" title="What FFTW Really Computes"> | |
37 <link href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" rel="next" title="1d Real-even DFTs (DCTs)"> | |
38 <link href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029" rel="prev" title="The 1d Discrete Fourier Transform (DFT)"> | |
39 <style type="text/css"> | |
40 <!-- | |
41 a.summary-letter {text-decoration: none} | |
42 blockquote.indentedblock {margin-right: 0em} | |
43 blockquote.smallindentedblock {margin-right: 0em; font-size: smaller} | |
44 blockquote.smallquotation {font-size: smaller} | |
45 div.display {margin-left: 3.2em} | |
46 div.example {margin-left: 3.2em} | |
47 div.lisp {margin-left: 3.2em} | |
48 div.smalldisplay {margin-left: 3.2em} | |
49 div.smallexample {margin-left: 3.2em} | |
50 div.smalllisp {margin-left: 3.2em} | |
51 kbd {font-style: oblique} | |
52 pre.display {font-family: inherit} | |
53 pre.format {font-family: inherit} | |
54 pre.menu-comment {font-family: serif} | |
55 pre.menu-preformatted {font-family: serif} | |
56 pre.smalldisplay {font-family: inherit; font-size: smaller} | |
57 pre.smallexample {font-size: smaller} | |
58 pre.smallformat {font-family: inherit; font-size: smaller} | |
59 pre.smalllisp {font-size: smaller} | |
60 span.nolinebreak {white-space: nowrap} | |
61 span.roman {font-family: initial; font-weight: normal} | |
62 span.sansserif {font-family: sans-serif; font-weight: normal} | |
63 ul.no-bullet {list-style: none} | |
64 --> | |
65 </style> | |
66 | |
67 | |
68 </head> | |
69 | |
70 <body lang="en"> | |
71 <a name="The-1d-Real_002ddata-DFT"></a> | |
72 <div class="header"> | |
73 <p> | |
74 Next: <a href="1d-Real_002deven-DFTs-_0028DCTs_0029.html#g_t1d-Real_002deven-DFTs-_0028DCTs_0029" accesskey="n" rel="next">1d Real-even DFTs (DCTs)</a>, Previous: <a href="The-1d-Discrete-Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-_0028DFT_0029" accesskey="p" rel="prev">The 1d Discrete Fourier Transform (DFT)</a>, Up: <a href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" accesskey="u" rel="up">What FFTW Really Computes</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p> | |
75 </div> | |
76 <hr> | |
77 <a name="The-1d-Real_002ddata-DFT-1"></a> | |
78 <h4 class="subsection">4.8.2 The 1d Real-data DFT</h4> | |
79 | |
80 <p>The real-input (r2c) DFT in FFTW computes the <em>forward</em> transform | |
81 <em>Y</em> of the size <code>n</code> real array <em>X</em>, exactly as defined | |
82 above, i.e. | |
83 <center><img src="equation-dft.png" align="top">.</center> | |
84 This output array <em>Y</em> can easily be shown to possess the | |
85 “Hermitian” symmetry | |
86 <a name="index-Hermitian-1"></a> | |
87 <i>Y<sub>k</sub> = Y<sub>n-k</sub></i><sup>*</sup>, | |
88 where we take <em>Y</em> to be periodic so that | |
89 <i>Y<sub>n</sub> = Y</i><sub>0</sub>. | |
90 </p> | |
91 <p>As a result of this symmetry, half of the output <em>Y</em> is redundant | |
92 (being the complex conjugate of the other half), and so the 1d r2c | |
93 transforms only output elements <em>0</em>…<em>n/2</em> of <em>Y</em> | |
94 (<em>n/2+1</em> complex numbers), where the division by <em>2</em> is | |
95 rounded down. | |
96 </p> | |
97 <p>Moreover, the Hermitian symmetry implies that | |
98 <i>Y</i><sub>0</sub> | |
99 and, if <em>n</em> is even, the | |
100 <i>Y</i><sub><i>n</i>/2</sub> | |
101 element, are purely real. So, for the <code>R2HC</code> r2r transform, the | |
102 halfcomplex format does not store the imaginary parts of these elements. | |
103 <a name="index-r2r-2"></a> | |
104 <a name="index-R2HC"></a> | |
105 <a name="index-halfcomplex-format-2"></a> | |
106 </p> | |
107 | |
108 <p>The c2r and <code>H2RC</code> r2r transforms compute the backward DFT of the | |
109 <em>complex</em> array <em>X</em> with Hermitian symmetry, stored in the | |
110 r2c/<code>R2HC</code> output formats, respectively, where the backward | |
111 transform is defined exactly as for the complex case: | |
112 <center><img src="equation-idft.png" align="top">.</center> | |
113 The outputs <code>Y</code> of this transform can easily be seen to be purely | |
114 real, and are stored as an array of real numbers. | |
115 </p> | |
116 <a name="index-normalization-9"></a> | |
117 <p>Like FFTW’s complex DFT, these transforms are unnormalized. In other | |
118 words, applying the real-to-complex (forward) and then the | |
119 complex-to-real (backward) transform will multiply the input by | |
120 <em>n</em>. | |
121 </p> | |
122 | |
123 | |
124 | |
125 </body> | |
126 </html> |