annotate src/fftw-3.3.3/rdft/problem2.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21
Chris@10 22 #include "dft.h"
Chris@10 23 #include "rdft.h"
Chris@10 24 #include <stddef.h>
Chris@10 25
Chris@10 26 static void destroy(problem *ego_)
Chris@10 27 {
Chris@10 28 problem_rdft2 *ego = (problem_rdft2 *) ego_;
Chris@10 29 X(tensor_destroy2)(ego->vecsz, ego->sz);
Chris@10 30 X(ifree)(ego_);
Chris@10 31 }
Chris@10 32
Chris@10 33 static void hash(const problem *p_, md5 *m)
Chris@10 34 {
Chris@10 35 const problem_rdft2 *p = (const problem_rdft2 *) p_;
Chris@10 36 X(md5puts)(m, "rdft2");
Chris@10 37 X(md5int)(m, p->r0 == p->cr);
Chris@10 38 X(md5INT)(m, p->r1 - p->r0);
Chris@10 39 X(md5INT)(m, p->ci - p->cr);
Chris@10 40 X(md5int)(m, X(alignment_of)(p->r0));
Chris@10 41 X(md5int)(m, X(alignment_of)(p->r1));
Chris@10 42 X(md5int)(m, X(alignment_of)(p->cr));
Chris@10 43 X(md5int)(m, X(alignment_of)(p->ci));
Chris@10 44 X(md5int)(m, p->kind);
Chris@10 45 X(tensor_md5)(m, p->sz);
Chris@10 46 X(tensor_md5)(m, p->vecsz);
Chris@10 47 }
Chris@10 48
Chris@10 49 static void print(const problem *ego_, printer *p)
Chris@10 50 {
Chris@10 51 const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
Chris@10 52 p->print(p, "(rdft2 %d %d %T %T)",
Chris@10 53 (int)(ego->cr == ego->r0),
Chris@10 54 (int)(ego->kind),
Chris@10 55 ego->sz,
Chris@10 56 ego->vecsz);
Chris@10 57 }
Chris@10 58
Chris@10 59 static void recur(const iodim *dims, int rnk, R *I0, R *I1)
Chris@10 60 {
Chris@10 61 if (rnk == RNK_MINFTY)
Chris@10 62 return;
Chris@10 63 else if (rnk == 0)
Chris@10 64 I0[0] = K(0.0);
Chris@10 65 else if (rnk > 0) {
Chris@10 66 INT i, n = dims[0].n, is = dims[0].is;
Chris@10 67
Chris@10 68 if (rnk == 1) {
Chris@10 69 for (i = 0; i < n - 1; i += 2) {
Chris@10 70 *I0 = *I1 = K(0.0);
Chris@10 71 I0 += is; I1 += is;
Chris@10 72 }
Chris@10 73 if (i < n)
Chris@10 74 *I0 = K(0.0);
Chris@10 75 } else {
Chris@10 76 for (i = 0; i < n; ++i)
Chris@10 77 recur(dims + 1, rnk - 1, I0 + i * is, I1 + i * is);
Chris@10 78 }
Chris@10 79 }
Chris@10 80 }
Chris@10 81
Chris@10 82 static void vrecur(const iodim *vdims, int vrnk,
Chris@10 83 const iodim *dims, int rnk, R *I0, R *I1)
Chris@10 84 {
Chris@10 85 if (vrnk == RNK_MINFTY)
Chris@10 86 return;
Chris@10 87 else if (vrnk == 0)
Chris@10 88 recur(dims, rnk, I0, I1);
Chris@10 89 else if (vrnk > 0) {
Chris@10 90 INT i, n = vdims[0].n, is = vdims[0].is;
Chris@10 91
Chris@10 92 for (i = 0; i < n; ++i)
Chris@10 93 vrecur(vdims + 1, vrnk - 1,
Chris@10 94 dims, rnk, I0 + i * is, I1 + i * is);
Chris@10 95 }
Chris@10 96 }
Chris@10 97
Chris@10 98 INT X(rdft2_complex_n)(INT real_n, rdft_kind kind)
Chris@10 99 {
Chris@10 100 switch (kind) {
Chris@10 101 case R2HC:
Chris@10 102 case HC2R:
Chris@10 103 return (real_n / 2) + 1;
Chris@10 104 case R2HCII:
Chris@10 105 case HC2RIII:
Chris@10 106 return (real_n + 1) / 2;
Chris@10 107 default:
Chris@10 108 /* can't happen */
Chris@10 109 A(0);
Chris@10 110 return 0;
Chris@10 111 }
Chris@10 112 }
Chris@10 113
Chris@10 114 static void zero(const problem *ego_)
Chris@10 115 {
Chris@10 116 const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
Chris@10 117 if (R2HC_KINDP(ego->kind)) {
Chris@10 118 /* FIXME: can we avoid the double recursion somehow? */
Chris@10 119 vrecur(ego->vecsz->dims, ego->vecsz->rnk,
Chris@10 120 ego->sz->dims, ego->sz->rnk,
Chris@10 121 UNTAINT(ego->r0), UNTAINT(ego->r1));
Chris@10 122 } else {
Chris@10 123 tensor *sz;
Chris@10 124 tensor *sz2 = X(tensor_copy)(ego->sz);
Chris@10 125 int rnk = sz2->rnk;
Chris@10 126 if (rnk > 0) /* ~half as many complex outputs */
Chris@10 127 sz2->dims[rnk-1].n =
Chris@10 128 X(rdft2_complex_n)(sz2->dims[rnk-1].n, ego->kind);
Chris@10 129 sz = X(tensor_append)(ego->vecsz, sz2);
Chris@10 130 X(tensor_destroy)(sz2);
Chris@10 131 X(dft_zerotens)(sz, UNTAINT(ego->cr), UNTAINT(ego->ci));
Chris@10 132 X(tensor_destroy)(sz);
Chris@10 133 }
Chris@10 134 }
Chris@10 135
Chris@10 136 static const problem_adt padt =
Chris@10 137 {
Chris@10 138 PROBLEM_RDFT2,
Chris@10 139 hash,
Chris@10 140 zero,
Chris@10 141 print,
Chris@10 142 destroy
Chris@10 143 };
Chris@10 144
Chris@10 145 problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
Chris@10 146 R *r0, R *r1, R *cr, R *ci,
Chris@10 147 rdft_kind kind)
Chris@10 148 {
Chris@10 149 problem_rdft2 *ego;
Chris@10 150
Chris@10 151 A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII);
Chris@10 152 A(X(tensor_kosherp)(sz));
Chris@10 153 A(X(tensor_kosherp)(vecsz));
Chris@10 154 A(FINITE_RNK(sz->rnk));
Chris@10 155
Chris@10 156 /* require in-place problems to use r0 == cr */
Chris@10 157 if (UNTAINT(r0) == UNTAINT(ci))
Chris@10 158 return X(mkproblem_unsolvable)();
Chris@10 159
Chris@10 160 /* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but
Chris@10 161 only if odd elements exist, which requires compressing the
Chris@10 162 tensors first */
Chris@10 163
Chris@10 164 if (UNTAINT(r0) == UNTAINT(cr))
Chris@10 165 r0 = cr = JOIN_TAINT(r0, cr);
Chris@10 166
Chris@10 167 ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt);
Chris@10 168
Chris@10 169 if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */
Chris@10 170 tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1);
Chris@10 171 tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1);
Chris@10 172 tensor *szcc = X(tensor_compress)(szc);
Chris@10 173 if (szcc->rnk > 0)
Chris@10 174 ego->sz = X(tensor_append)(szcc, szr);
Chris@10 175 else
Chris@10 176 ego->sz = X(tensor_compress)(szr);
Chris@10 177 X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc);
Chris@10 178 } else {
Chris@10 179 ego->sz = X(tensor_compress)(sz);
Chris@10 180 }
Chris@10 181 ego->vecsz = X(tensor_compress_contiguous)(vecsz);
Chris@10 182 ego->r0 = r0;
Chris@10 183 ego->r1 = r1;
Chris@10 184 ego->cr = cr;
Chris@10 185 ego->ci = ci;
Chris@10 186 ego->kind = kind;
Chris@10 187
Chris@10 188 A(FINITE_RNK(ego->sz->rnk));
Chris@10 189 return &(ego->super);
Chris@10 190
Chris@10 191 }
Chris@10 192
Chris@10 193 /* Same as X(mkproblem_rdft2), but also destroy input tensors. */
Chris@10 194 problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz,
Chris@10 195 R *r0, R *r1, R *cr, R *ci, rdft_kind kind)
Chris@10 196 {
Chris@10 197 problem *p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
Chris@10 198 X(tensor_destroy2)(vecsz, sz);
Chris@10 199 return p;
Chris@10 200 }
Chris@10 201
Chris@10 202 /* Same as X(mkproblem_rdft2_d), but with only one R pointer.
Chris@10 203 Used by the API. */
Chris@10 204 problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz,
Chris@10 205 R *r0, R *cr, R *ci, rdft_kind kind)
Chris@10 206 {
Chris@10 207 problem *p;
Chris@10 208 int rnk = sz->rnk;
Chris@10 209 R *r1;
Chris@10 210
Chris@10 211 if (rnk == 0)
Chris@10 212 r1 = r0;
Chris@10 213 else if (R2HC_KINDP(kind)) {
Chris@10 214 r1 = r0 + sz->dims[rnk-1].is;
Chris@10 215 sz->dims[rnk-1].is *= 2;
Chris@10 216 } else {
Chris@10 217 r1 = r0 + sz->dims[rnk-1].os;
Chris@10 218 sz->dims[rnk-1].os *= 2;
Chris@10 219 }
Chris@10 220
Chris@10 221 p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
Chris@10 222 X(tensor_destroy2)(vecsz, sz);
Chris@10 223 return p;
Chris@10 224 }