Chris@10: /* Chris@10: * Copyright (c) 2003, 2007-11 Matteo Frigo Chris@10: * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology Chris@10: * Chris@10: * This program is free software; you can redistribute it and/or modify Chris@10: * it under the terms of the GNU General Public License as published by Chris@10: * the Free Software Foundation; either version 2 of the License, or Chris@10: * (at your option) any later version. Chris@10: * Chris@10: * This program is distributed in the hope that it will be useful, Chris@10: * but WITHOUT ANY WARRANTY; without even the implied warranty of Chris@10: * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Chris@10: * GNU General Public License for more details. Chris@10: * Chris@10: * You should have received a copy of the GNU General Public License Chris@10: * along with this program; if not, write to the Free Software Chris@10: * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Chris@10: * Chris@10: */ Chris@10: Chris@10: Chris@10: #include "dft.h" Chris@10: #include "rdft.h" Chris@10: #include Chris@10: Chris@10: static void destroy(problem *ego_) Chris@10: { Chris@10: problem_rdft2 *ego = (problem_rdft2 *) ego_; Chris@10: X(tensor_destroy2)(ego->vecsz, ego->sz); Chris@10: X(ifree)(ego_); Chris@10: } Chris@10: Chris@10: static void hash(const problem *p_, md5 *m) Chris@10: { Chris@10: const problem_rdft2 *p = (const problem_rdft2 *) p_; Chris@10: X(md5puts)(m, "rdft2"); Chris@10: X(md5int)(m, p->r0 == p->cr); Chris@10: X(md5INT)(m, p->r1 - p->r0); Chris@10: X(md5INT)(m, p->ci - p->cr); Chris@10: X(md5int)(m, X(alignment_of)(p->r0)); Chris@10: X(md5int)(m, X(alignment_of)(p->r1)); Chris@10: X(md5int)(m, X(alignment_of)(p->cr)); Chris@10: X(md5int)(m, X(alignment_of)(p->ci)); Chris@10: X(md5int)(m, p->kind); Chris@10: X(tensor_md5)(m, p->sz); Chris@10: X(tensor_md5)(m, p->vecsz); Chris@10: } Chris@10: Chris@10: static void print(const problem *ego_, printer *p) Chris@10: { Chris@10: const problem_rdft2 *ego = (const problem_rdft2 *) ego_; Chris@10: p->print(p, "(rdft2 %d %d %T %T)", Chris@10: (int)(ego->cr == ego->r0), Chris@10: (int)(ego->kind), Chris@10: ego->sz, Chris@10: ego->vecsz); Chris@10: } Chris@10: Chris@10: static void recur(const iodim *dims, int rnk, R *I0, R *I1) Chris@10: { Chris@10: if (rnk == RNK_MINFTY) Chris@10: return; Chris@10: else if (rnk == 0) Chris@10: I0[0] = K(0.0); Chris@10: else if (rnk > 0) { Chris@10: INT i, n = dims[0].n, is = dims[0].is; Chris@10: Chris@10: if (rnk == 1) { Chris@10: for (i = 0; i < n - 1; i += 2) { Chris@10: *I0 = *I1 = K(0.0); Chris@10: I0 += is; I1 += is; Chris@10: } Chris@10: if (i < n) Chris@10: *I0 = K(0.0); Chris@10: } else { Chris@10: for (i = 0; i < n; ++i) Chris@10: recur(dims + 1, rnk - 1, I0 + i * is, I1 + i * is); Chris@10: } Chris@10: } Chris@10: } Chris@10: Chris@10: static void vrecur(const iodim *vdims, int vrnk, Chris@10: const iodim *dims, int rnk, R *I0, R *I1) Chris@10: { Chris@10: if (vrnk == RNK_MINFTY) Chris@10: return; Chris@10: else if (vrnk == 0) Chris@10: recur(dims, rnk, I0, I1); Chris@10: else if (vrnk > 0) { Chris@10: INT i, n = vdims[0].n, is = vdims[0].is; Chris@10: Chris@10: for (i = 0; i < n; ++i) Chris@10: vrecur(vdims + 1, vrnk - 1, Chris@10: dims, rnk, I0 + i * is, I1 + i * is); Chris@10: } Chris@10: } Chris@10: Chris@10: INT X(rdft2_complex_n)(INT real_n, rdft_kind kind) Chris@10: { Chris@10: switch (kind) { Chris@10: case R2HC: Chris@10: case HC2R: Chris@10: return (real_n / 2) + 1; Chris@10: case R2HCII: Chris@10: case HC2RIII: Chris@10: return (real_n + 1) / 2; Chris@10: default: Chris@10: /* can't happen */ Chris@10: A(0); Chris@10: return 0; Chris@10: } Chris@10: } Chris@10: Chris@10: static void zero(const problem *ego_) Chris@10: { Chris@10: const problem_rdft2 *ego = (const problem_rdft2 *) ego_; Chris@10: if (R2HC_KINDP(ego->kind)) { Chris@10: /* FIXME: can we avoid the double recursion somehow? */ Chris@10: vrecur(ego->vecsz->dims, ego->vecsz->rnk, Chris@10: ego->sz->dims, ego->sz->rnk, Chris@10: UNTAINT(ego->r0), UNTAINT(ego->r1)); Chris@10: } else { Chris@10: tensor *sz; Chris@10: tensor *sz2 = X(tensor_copy)(ego->sz); Chris@10: int rnk = sz2->rnk; Chris@10: if (rnk > 0) /* ~half as many complex outputs */ Chris@10: sz2->dims[rnk-1].n = Chris@10: X(rdft2_complex_n)(sz2->dims[rnk-1].n, ego->kind); Chris@10: sz = X(tensor_append)(ego->vecsz, sz2); Chris@10: X(tensor_destroy)(sz2); Chris@10: X(dft_zerotens)(sz, UNTAINT(ego->cr), UNTAINT(ego->ci)); Chris@10: X(tensor_destroy)(sz); Chris@10: } Chris@10: } Chris@10: Chris@10: static const problem_adt padt = Chris@10: { Chris@10: PROBLEM_RDFT2, Chris@10: hash, Chris@10: zero, Chris@10: print, Chris@10: destroy Chris@10: }; Chris@10: Chris@10: problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz, Chris@10: R *r0, R *r1, R *cr, R *ci, Chris@10: rdft_kind kind) Chris@10: { Chris@10: problem_rdft2 *ego; Chris@10: Chris@10: A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII); Chris@10: A(X(tensor_kosherp)(sz)); Chris@10: A(X(tensor_kosherp)(vecsz)); Chris@10: A(FINITE_RNK(sz->rnk)); Chris@10: Chris@10: /* require in-place problems to use r0 == cr */ Chris@10: if (UNTAINT(r0) == UNTAINT(ci)) Chris@10: return X(mkproblem_unsolvable)(); Chris@10: Chris@10: /* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but Chris@10: only if odd elements exist, which requires compressing the Chris@10: tensors first */ Chris@10: Chris@10: if (UNTAINT(r0) == UNTAINT(cr)) Chris@10: r0 = cr = JOIN_TAINT(r0, cr); Chris@10: Chris@10: ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt); Chris@10: Chris@10: if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */ Chris@10: tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1); Chris@10: tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1); Chris@10: tensor *szcc = X(tensor_compress)(szc); Chris@10: if (szcc->rnk > 0) Chris@10: ego->sz = X(tensor_append)(szcc, szr); Chris@10: else Chris@10: ego->sz = X(tensor_compress)(szr); Chris@10: X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc); Chris@10: } else { Chris@10: ego->sz = X(tensor_compress)(sz); Chris@10: } Chris@10: ego->vecsz = X(tensor_compress_contiguous)(vecsz); Chris@10: ego->r0 = r0; Chris@10: ego->r1 = r1; Chris@10: ego->cr = cr; Chris@10: ego->ci = ci; Chris@10: ego->kind = kind; Chris@10: Chris@10: A(FINITE_RNK(ego->sz->rnk)); Chris@10: return &(ego->super); Chris@10: Chris@10: } Chris@10: Chris@10: /* Same as X(mkproblem_rdft2), but also destroy input tensors. */ Chris@10: problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz, Chris@10: R *r0, R *r1, R *cr, R *ci, rdft_kind kind) Chris@10: { Chris@10: problem *p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind); Chris@10: X(tensor_destroy2)(vecsz, sz); Chris@10: return p; Chris@10: } Chris@10: Chris@10: /* Same as X(mkproblem_rdft2_d), but with only one R pointer. Chris@10: Used by the API. */ Chris@10: problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz, Chris@10: R *r0, R *cr, R *ci, rdft_kind kind) Chris@10: { Chris@10: problem *p; Chris@10: int rnk = sz->rnk; Chris@10: R *r1; Chris@10: Chris@10: if (rnk == 0) Chris@10: r1 = r0; Chris@10: else if (R2HC_KINDP(kind)) { Chris@10: r1 = r0 + sz->dims[rnk-1].is; Chris@10: sz->dims[rnk-1].is *= 2; Chris@10: } else { Chris@10: r1 = r0 + sz->dims[rnk-1].os; Chris@10: sz->dims[rnk-1].os *= 2; Chris@10: } Chris@10: Chris@10: p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind); Chris@10: X(tensor_destroy2)(vecsz, sz); Chris@10: return p; Chris@10: }