Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/problem2.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/problem2.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,224 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + + +#include "dft.h" +#include "rdft.h" +#include <stddef.h> + +static void destroy(problem *ego_) +{ + problem_rdft2 *ego = (problem_rdft2 *) ego_; + X(tensor_destroy2)(ego->vecsz, ego->sz); + X(ifree)(ego_); +} + +static void hash(const problem *p_, md5 *m) +{ + const problem_rdft2 *p = (const problem_rdft2 *) p_; + X(md5puts)(m, "rdft2"); + X(md5int)(m, p->r0 == p->cr); + X(md5INT)(m, p->r1 - p->r0); + X(md5INT)(m, p->ci - p->cr); + X(md5int)(m, X(alignment_of)(p->r0)); + X(md5int)(m, X(alignment_of)(p->r1)); + X(md5int)(m, X(alignment_of)(p->cr)); + X(md5int)(m, X(alignment_of)(p->ci)); + X(md5int)(m, p->kind); + X(tensor_md5)(m, p->sz); + X(tensor_md5)(m, p->vecsz); +} + +static void print(const problem *ego_, printer *p) +{ + const problem_rdft2 *ego = (const problem_rdft2 *) ego_; + p->print(p, "(rdft2 %d %d %T %T)", + (int)(ego->cr == ego->r0), + (int)(ego->kind), + ego->sz, + ego->vecsz); +} + +static void recur(const iodim *dims, int rnk, R *I0, R *I1) +{ + if (rnk == RNK_MINFTY) + return; + else if (rnk == 0) + I0[0] = K(0.0); + else if (rnk > 0) { + INT i, n = dims[0].n, is = dims[0].is; + + if (rnk == 1) { + for (i = 0; i < n - 1; i += 2) { + *I0 = *I1 = K(0.0); + I0 += is; I1 += is; + } + if (i < n) + *I0 = K(0.0); + } else { + for (i = 0; i < n; ++i) + recur(dims + 1, rnk - 1, I0 + i * is, I1 + i * is); + } + } +} + +static void vrecur(const iodim *vdims, int vrnk, + const iodim *dims, int rnk, R *I0, R *I1) +{ + if (vrnk == RNK_MINFTY) + return; + else if (vrnk == 0) + recur(dims, rnk, I0, I1); + else if (vrnk > 0) { + INT i, n = vdims[0].n, is = vdims[0].is; + + for (i = 0; i < n; ++i) + vrecur(vdims + 1, vrnk - 1, + dims, rnk, I0 + i * is, I1 + i * is); + } +} + +INT X(rdft2_complex_n)(INT real_n, rdft_kind kind) +{ + switch (kind) { + case R2HC: + case HC2R: + return (real_n / 2) + 1; + case R2HCII: + case HC2RIII: + return (real_n + 1) / 2; + default: + /* can't happen */ + A(0); + return 0; + } +} + +static void zero(const problem *ego_) +{ + const problem_rdft2 *ego = (const problem_rdft2 *) ego_; + if (R2HC_KINDP(ego->kind)) { + /* FIXME: can we avoid the double recursion somehow? */ + vrecur(ego->vecsz->dims, ego->vecsz->rnk, + ego->sz->dims, ego->sz->rnk, + UNTAINT(ego->r0), UNTAINT(ego->r1)); + } else { + tensor *sz; + tensor *sz2 = X(tensor_copy)(ego->sz); + int rnk = sz2->rnk; + if (rnk > 0) /* ~half as many complex outputs */ + sz2->dims[rnk-1].n = + X(rdft2_complex_n)(sz2->dims[rnk-1].n, ego->kind); + sz = X(tensor_append)(ego->vecsz, sz2); + X(tensor_destroy)(sz2); + X(dft_zerotens)(sz, UNTAINT(ego->cr), UNTAINT(ego->ci)); + X(tensor_destroy)(sz); + } +} + +static const problem_adt padt = +{ + PROBLEM_RDFT2, + hash, + zero, + print, + destroy +}; + +problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz, + R *r0, R *r1, R *cr, R *ci, + rdft_kind kind) +{ + problem_rdft2 *ego; + + A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII); + A(X(tensor_kosherp)(sz)); + A(X(tensor_kosherp)(vecsz)); + A(FINITE_RNK(sz->rnk)); + + /* require in-place problems to use r0 == cr */ + if (UNTAINT(r0) == UNTAINT(ci)) + return X(mkproblem_unsolvable)(); + + /* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but + only if odd elements exist, which requires compressing the + tensors first */ + + if (UNTAINT(r0) == UNTAINT(cr)) + r0 = cr = JOIN_TAINT(r0, cr); + + ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt); + + if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */ + tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1); + tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1); + tensor *szcc = X(tensor_compress)(szc); + if (szcc->rnk > 0) + ego->sz = X(tensor_append)(szcc, szr); + else + ego->sz = X(tensor_compress)(szr); + X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc); + } else { + ego->sz = X(tensor_compress)(sz); + } + ego->vecsz = X(tensor_compress_contiguous)(vecsz); + ego->r0 = r0; + ego->r1 = r1; + ego->cr = cr; + ego->ci = ci; + ego->kind = kind; + + A(FINITE_RNK(ego->sz->rnk)); + return &(ego->super); + +} + +/* Same as X(mkproblem_rdft2), but also destroy input tensors. */ +problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz, + R *r0, R *r1, R *cr, R *ci, rdft_kind kind) +{ + problem *p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind); + X(tensor_destroy2)(vecsz, sz); + return p; +} + +/* Same as X(mkproblem_rdft2_d), but with only one R pointer. + Used by the API. */ +problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz, + R *r0, R *cr, R *ci, rdft_kind kind) +{ + problem *p; + int rnk = sz->rnk; + R *r1; + + if (rnk == 0) + r1 = r0; + else if (R2HC_KINDP(kind)) { + r1 = r0 + sz->dims[rnk-1].is; + sz->dims[rnk-1].is *= 2; + } else { + r1 = r0 + sz->dims[rnk-1].os; + sz->dims[rnk-1].os *= 2; + } + + p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind); + X(tensor_destroy2)(vecsz, sz); + return p; +}