diff src/fftw-3.3.3/rdft/problem2.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/problem2.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,224 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+
+#include "dft.h"
+#include "rdft.h"
+#include <stddef.h>
+
+static void destroy(problem *ego_)
+{
+     problem_rdft2 *ego = (problem_rdft2 *) ego_;
+     X(tensor_destroy2)(ego->vecsz, ego->sz);
+     X(ifree)(ego_);
+}
+
+static void hash(const problem *p_, md5 *m)
+{
+     const problem_rdft2 *p = (const problem_rdft2 *) p_;
+     X(md5puts)(m, "rdft2");
+     X(md5int)(m, p->r0 == p->cr);
+     X(md5INT)(m, p->r1 - p->r0);
+     X(md5INT)(m, p->ci - p->cr);
+     X(md5int)(m, X(alignment_of)(p->r0));
+     X(md5int)(m, X(alignment_of)(p->r1));
+     X(md5int)(m, X(alignment_of)(p->cr)); 
+     X(md5int)(m, X(alignment_of)(p->ci)); 
+     X(md5int)(m, p->kind);
+     X(tensor_md5)(m, p->sz);
+     X(tensor_md5)(m, p->vecsz);
+}
+
+static void print(const problem *ego_, printer *p)
+{
+     const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
+     p->print(p, "(rdft2 %d %d %T %T)", 
+	      (int)(ego->cr == ego->r0), 
+	      (int)(ego->kind),
+	      ego->sz,
+	      ego->vecsz);
+}
+
+static void recur(const iodim *dims, int rnk, R *I0, R *I1)
+{
+     if (rnk == RNK_MINFTY)
+          return;
+     else if (rnk == 0)
+          I0[0] = K(0.0);
+     else if (rnk > 0) {
+          INT i, n = dims[0].n, is = dims[0].is;
+
+	  if (rnk == 1) {
+	       for (i = 0; i < n - 1; i += 2) {
+		    *I0 = *I1 = K(0.0);
+		    I0 += is; I1 += is;
+	       }
+	       if (i < n) 
+		    *I0 = K(0.0);
+	  } else {
+	       for (i = 0; i < n; ++i)
+		    recur(dims + 1, rnk - 1, I0 + i * is, I1 + i * is);
+	  }
+     }
+}
+
+static void vrecur(const iodim *vdims, int vrnk,
+		   const iodim *dims, int rnk, R *I0, R *I1)
+{
+     if (vrnk == RNK_MINFTY)
+          return;
+     else if (vrnk == 0)
+	  recur(dims, rnk, I0, I1);
+     else if (vrnk > 0) {
+          INT i, n = vdims[0].n, is = vdims[0].is;
+
+	  for (i = 0; i < n; ++i)
+	       vrecur(vdims + 1, vrnk - 1, 
+		      dims, rnk, I0 + i * is, I1 + i * is);
+     }
+}
+
+INT X(rdft2_complex_n)(INT real_n, rdft_kind kind)
+{
+     switch (kind) {
+	 case R2HC:
+	 case HC2R:
+	      return (real_n / 2) + 1;
+	 case R2HCII:
+	 case HC2RIII:
+	      return (real_n + 1) / 2;
+	 default:
+	      /* can't happen */
+	      A(0);
+	      return 0;
+     }
+}
+
+static void zero(const problem *ego_)
+{
+     const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
+     if (R2HC_KINDP(ego->kind)) {
+	  /* FIXME: can we avoid the double recursion somehow? */
+	  vrecur(ego->vecsz->dims, ego->vecsz->rnk, 
+		 ego->sz->dims, ego->sz->rnk, 
+		 UNTAINT(ego->r0), UNTAINT(ego->r1));
+     } else {
+	  tensor *sz;
+	  tensor *sz2 = X(tensor_copy)(ego->sz);
+	  int rnk = sz2->rnk;
+	  if (rnk > 0) /* ~half as many complex outputs */
+	       sz2->dims[rnk-1].n = 
+		    X(rdft2_complex_n)(sz2->dims[rnk-1].n, ego->kind);
+	  sz = X(tensor_append)(ego->vecsz, sz2);
+	  X(tensor_destroy)(sz2);
+	  X(dft_zerotens)(sz, UNTAINT(ego->cr), UNTAINT(ego->ci));
+	  X(tensor_destroy)(sz);
+     }
+}
+
+static const problem_adt padt =
+{
+     PROBLEM_RDFT2,
+     hash,
+     zero,
+     print,
+     destroy
+};
+
+problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
+			    R *r0, R *r1, R *cr, R *ci,
+			    rdft_kind kind)
+{
+     problem_rdft2 *ego;
+
+     A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII);
+     A(X(tensor_kosherp)(sz));
+     A(X(tensor_kosherp)(vecsz));
+     A(FINITE_RNK(sz->rnk));
+
+     /* require in-place problems to use r0 == cr */
+     if (UNTAINT(r0) == UNTAINT(ci))
+	  return X(mkproblem_unsolvable)();
+
+     /* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but
+	only if odd elements exist, which requires compressing the 
+	tensors first */
+
+     if (UNTAINT(r0) == UNTAINT(cr)) 
+	  r0 = cr = JOIN_TAINT(r0, cr);
+
+     ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt);
+
+     if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */
+	  tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1);
+	  tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1);
+	  tensor *szcc = X(tensor_compress)(szc);
+	  if (szcc->rnk > 0)
+	       ego->sz = X(tensor_append)(szcc, szr);
+	  else
+	       ego->sz = X(tensor_compress)(szr);
+	  X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc);
+     } else {
+	  ego->sz = X(tensor_compress)(sz);
+     }
+     ego->vecsz = X(tensor_compress_contiguous)(vecsz);
+     ego->r0 = r0;
+     ego->r1 = r1;
+     ego->cr = cr;
+     ego->ci = ci;
+     ego->kind = kind;
+
+     A(FINITE_RNK(ego->sz->rnk));
+     return &(ego->super);
+
+}
+
+/* Same as X(mkproblem_rdft2), but also destroy input tensors. */
+problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz,
+			      R *r0, R *r1, R *cr, R *ci, rdft_kind kind)
+{
+     problem *p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
+     X(tensor_destroy2)(vecsz, sz);
+     return p;
+}
+
+/* Same as X(mkproblem_rdft2_d), but with only one R pointer.
+   Used by the API. */
+problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz,
+					R *r0, R *cr, R *ci, rdft_kind kind)
+{
+     problem *p;
+     int rnk = sz->rnk;
+     R *r1;
+
+     if (rnk == 0)
+	  r1 = r0;
+     else if (R2HC_KINDP(kind)) {
+	  r1 = r0 + sz->dims[rnk-1].is;
+	  sz->dims[rnk-1].is *= 2;
+     } else {
+	  r1 = r0 + sz->dims[rnk-1].os;
+	  sz->dims[rnk-1].os *= 2;
+     }
+
+     p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
+     X(tensor_destroy2)(vecsz, sz);
+     return p;
+}