Chris@10
|
1 /*
|
Chris@10
|
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
|
Chris@10
|
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
|
Chris@10
|
4 *
|
Chris@10
|
5 * This program is free software; you can redistribute it and/or modify
|
Chris@10
|
6 * it under the terms of the GNU General Public License as published by
|
Chris@10
|
7 * the Free Software Foundation; either version 2 of the License, or
|
Chris@10
|
8 * (at your option) any later version.
|
Chris@10
|
9 *
|
Chris@10
|
10 * This program is distributed in the hope that it will be useful,
|
Chris@10
|
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
Chris@10
|
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
Chris@10
|
13 * GNU General Public License for more details.
|
Chris@10
|
14 *
|
Chris@10
|
15 * You should have received a copy of the GNU General Public License
|
Chris@10
|
16 * along with this program; if not, write to the Free Software
|
Chris@10
|
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
Chris@10
|
18 *
|
Chris@10
|
19 */
|
Chris@10
|
20
|
Chris@10
|
21
|
Chris@10
|
22 /* direct RDFT solver, using r2c codelets */
|
Chris@10
|
23
|
Chris@10
|
24 #include "rdft.h"
|
Chris@10
|
25
|
Chris@10
|
26 typedef struct {
|
Chris@10
|
27 solver super;
|
Chris@10
|
28 const kr2c_desc *desc;
|
Chris@10
|
29 kr2c k;
|
Chris@10
|
30 int bufferedp;
|
Chris@10
|
31 } S;
|
Chris@10
|
32
|
Chris@10
|
33 typedef struct {
|
Chris@10
|
34 plan_rdft super;
|
Chris@10
|
35
|
Chris@10
|
36 stride rs, csr, csi;
|
Chris@10
|
37 stride brs, bcsr, bcsi;
|
Chris@10
|
38 INT n, vl, rs0, ivs, ovs, ioffset, bioffset;
|
Chris@10
|
39 kr2c k;
|
Chris@10
|
40 const S *slv;
|
Chris@10
|
41 } P;
|
Chris@10
|
42
|
Chris@10
|
43 /*************************************************************
|
Chris@10
|
44 Nonbuffered code
|
Chris@10
|
45 *************************************************************/
|
Chris@10
|
46 static void apply_r2hc(const plan *ego_, R *I, R *O)
|
Chris@10
|
47 {
|
Chris@10
|
48 const P *ego = (const P *) ego_;
|
Chris@10
|
49 ASSERT_ALIGNED_DOUBLE;
|
Chris@10
|
50 ego->k(I, I + ego->rs0, O, O + ego->ioffset,
|
Chris@10
|
51 ego->rs, ego->csr, ego->csi,
|
Chris@10
|
52 ego->vl, ego->ivs, ego->ovs);
|
Chris@10
|
53 }
|
Chris@10
|
54
|
Chris@10
|
55 static void apply_hc2r(const plan *ego_, R *I, R *O)
|
Chris@10
|
56 {
|
Chris@10
|
57 const P *ego = (const P *) ego_;
|
Chris@10
|
58 ASSERT_ALIGNED_DOUBLE;
|
Chris@10
|
59 ego->k(O, O + ego->rs0, I, I + ego->ioffset,
|
Chris@10
|
60 ego->rs, ego->csr, ego->csi,
|
Chris@10
|
61 ego->vl, ego->ivs, ego->ovs);
|
Chris@10
|
62 }
|
Chris@10
|
63
|
Chris@10
|
64 /*************************************************************
|
Chris@10
|
65 Buffered code
|
Chris@10
|
66 *************************************************************/
|
Chris@10
|
67 /* should not be 2^k to avoid associativity conflicts */
|
Chris@10
|
68 static INT compute_batchsize(INT radix)
|
Chris@10
|
69 {
|
Chris@10
|
70 /* round up to multiple of 4 */
|
Chris@10
|
71 radix += 3;
|
Chris@10
|
72 radix &= -4;
|
Chris@10
|
73
|
Chris@10
|
74 return (radix + 2);
|
Chris@10
|
75 }
|
Chris@10
|
76
|
Chris@10
|
77 static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz)
|
Chris@10
|
78 {
|
Chris@10
|
79 X(cpy2d_ci)(I, buf,
|
Chris@10
|
80 ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1),
|
Chris@10
|
81 batchsz, ego->ivs, 1, 1);
|
Chris@10
|
82
|
Chris@10
|
83 if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) {
|
Chris@10
|
84 /* transform directly to output */
|
Chris@10
|
85 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
|
Chris@10
|
86 O, O + ego->ioffset,
|
Chris@10
|
87 ego->brs, ego->csr, ego->csi,
|
Chris@10
|
88 batchsz, 1, ego->ovs);
|
Chris@10
|
89 } else {
|
Chris@10
|
90 /* transform to buffer and copy back */
|
Chris@10
|
91 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
|
Chris@10
|
92 buf, buf + ego->bioffset,
|
Chris@10
|
93 ego->brs, ego->bcsr, ego->bcsi,
|
Chris@10
|
94 batchsz, 1, 1);
|
Chris@10
|
95 X(cpy2d_co)(buf, O,
|
Chris@10
|
96 ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1),
|
Chris@10
|
97 batchsz, 1, ego->ovs, 1);
|
Chris@10
|
98 }
|
Chris@10
|
99 }
|
Chris@10
|
100
|
Chris@10
|
101 static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz)
|
Chris@10
|
102 {
|
Chris@10
|
103 if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) {
|
Chris@10
|
104 /* transform directly from input */
|
Chris@10
|
105 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
|
Chris@10
|
106 I, I + ego->ioffset,
|
Chris@10
|
107 ego->brs, ego->csr, ego->csi,
|
Chris@10
|
108 batchsz, ego->ivs, 1);
|
Chris@10
|
109 } else {
|
Chris@10
|
110 /* copy into buffer and transform in place */
|
Chris@10
|
111 X(cpy2d_ci)(I, buf,
|
Chris@10
|
112 ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1),
|
Chris@10
|
113 batchsz, ego->ivs, 1, 1);
|
Chris@10
|
114 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
|
Chris@10
|
115 buf, buf + ego->bioffset,
|
Chris@10
|
116 ego->brs, ego->bcsr, ego->bcsi,
|
Chris@10
|
117 batchsz, 1, 1);
|
Chris@10
|
118 }
|
Chris@10
|
119 X(cpy2d_co)(buf, O,
|
Chris@10
|
120 ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0,
|
Chris@10
|
121 batchsz, 1, ego->ovs, 1);
|
Chris@10
|
122 }
|
Chris@10
|
123
|
Chris@10
|
124 static void iterate(const P *ego, R *I, R *O,
|
Chris@10
|
125 void (*dobatch)(const P *ego, R *I, R *O,
|
Chris@10
|
126 R *buf, INT batchsz))
|
Chris@10
|
127 {
|
Chris@10
|
128 R *buf;
|
Chris@10
|
129 INT vl = ego->vl;
|
Chris@10
|
130 INT n = ego->n;
|
Chris@10
|
131 INT i;
|
Chris@10
|
132 INT batchsz = compute_batchsize(n);
|
Chris@10
|
133 size_t bufsz = n * batchsz * sizeof(R);
|
Chris@10
|
134
|
Chris@10
|
135 BUF_ALLOC(R *, buf, bufsz);
|
Chris@10
|
136
|
Chris@10
|
137 for (i = 0; i < vl - batchsz; i += batchsz) {
|
Chris@10
|
138 dobatch(ego, I, O, buf, batchsz);
|
Chris@10
|
139 I += batchsz * ego->ivs;
|
Chris@10
|
140 O += batchsz * ego->ovs;
|
Chris@10
|
141 }
|
Chris@10
|
142 dobatch(ego, I, O, buf, vl - i);
|
Chris@10
|
143
|
Chris@10
|
144 BUF_FREE(buf, bufsz);
|
Chris@10
|
145 }
|
Chris@10
|
146
|
Chris@10
|
147 static void apply_buf_r2hc(const plan *ego_, R *I, R *O)
|
Chris@10
|
148 {
|
Chris@10
|
149 iterate((const P *) ego_, I, O, dobatch_r2hc);
|
Chris@10
|
150 }
|
Chris@10
|
151
|
Chris@10
|
152 static void apply_buf_hc2r(const plan *ego_, R *I, R *O)
|
Chris@10
|
153 {
|
Chris@10
|
154 iterate((const P *) ego_, I, O, dobatch_hc2r);
|
Chris@10
|
155 }
|
Chris@10
|
156
|
Chris@10
|
157 static void destroy(plan *ego_)
|
Chris@10
|
158 {
|
Chris@10
|
159 P *ego = (P *) ego_;
|
Chris@10
|
160 X(stride_destroy)(ego->rs);
|
Chris@10
|
161 X(stride_destroy)(ego->csr);
|
Chris@10
|
162 X(stride_destroy)(ego->csi);
|
Chris@10
|
163 X(stride_destroy)(ego->brs);
|
Chris@10
|
164 X(stride_destroy)(ego->bcsr);
|
Chris@10
|
165 X(stride_destroy)(ego->bcsi);
|
Chris@10
|
166 }
|
Chris@10
|
167
|
Chris@10
|
168 static void print(const plan *ego_, printer *p)
|
Chris@10
|
169 {
|
Chris@10
|
170 const P *ego = (const P *) ego_;
|
Chris@10
|
171 const S *s = ego->slv;
|
Chris@10
|
172
|
Chris@10
|
173 if (ego->slv->bufferedp)
|
Chris@10
|
174 p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")",
|
Chris@10
|
175 X(rdft_kind_str)(s->desc->genus->kind),
|
Chris@10
|
176 /* hack */ WS(ego->bcsr, 1), ego->n,
|
Chris@10
|
177 ego->vl, s->desc->nam);
|
Chris@10
|
178
|
Chris@10
|
179 else
|
Chris@10
|
180 p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")",
|
Chris@10
|
181 X(rdft_kind_str)(s->desc->genus->kind), ego->n,
|
Chris@10
|
182 ego->vl, s->desc->nam);
|
Chris@10
|
183 }
|
Chris@10
|
184
|
Chris@10
|
185 static INT ioffset(rdft_kind kind, INT sz, INT s)
|
Chris@10
|
186 {
|
Chris@10
|
187 return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1)));
|
Chris@10
|
188 }
|
Chris@10
|
189
|
Chris@10
|
190 static int applicable(const solver *ego_, const problem *p_)
|
Chris@10
|
191 {
|
Chris@10
|
192 const S *ego = (const S *) ego_;
|
Chris@10
|
193 const kr2c_desc *desc = ego->desc;
|
Chris@10
|
194 const problem_rdft *p = (const problem_rdft *) p_;
|
Chris@10
|
195 INT vl, ivs, ovs;
|
Chris@10
|
196
|
Chris@10
|
197 return (
|
Chris@10
|
198 1
|
Chris@10
|
199 && p->sz->rnk == 1
|
Chris@10
|
200 && p->vecsz->rnk <= 1
|
Chris@10
|
201 && p->sz->dims[0].n == desc->n
|
Chris@10
|
202 && p->kind[0] == desc->genus->kind
|
Chris@10
|
203
|
Chris@10
|
204 /* check strides etc */
|
Chris@10
|
205 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
|
Chris@10
|
206
|
Chris@10
|
207 && (0
|
Chris@10
|
208 /* can operate out-of-place */
|
Chris@10
|
209 || p->I != p->O
|
Chris@10
|
210
|
Chris@10
|
211 /* computing one transform */
|
Chris@10
|
212 || vl == 1
|
Chris@10
|
213
|
Chris@10
|
214 /* can operate in-place as long as strides are the same */
|
Chris@10
|
215 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
|
Chris@10
|
216 )
|
Chris@10
|
217 );
|
Chris@10
|
218 }
|
Chris@10
|
219
|
Chris@10
|
220 static int applicable_buf(const solver *ego_, const problem *p_)
|
Chris@10
|
221 {
|
Chris@10
|
222 const S *ego = (const S *) ego_;
|
Chris@10
|
223 const kr2c_desc *desc = ego->desc;
|
Chris@10
|
224 const problem_rdft *p = (const problem_rdft *) p_;
|
Chris@10
|
225 INT vl, ivs, ovs, batchsz;
|
Chris@10
|
226
|
Chris@10
|
227 return (
|
Chris@10
|
228 1
|
Chris@10
|
229 && p->sz->rnk == 1
|
Chris@10
|
230 && p->vecsz->rnk <= 1
|
Chris@10
|
231 && p->sz->dims[0].n == desc->n
|
Chris@10
|
232 && p->kind[0] == desc->genus->kind
|
Chris@10
|
233
|
Chris@10
|
234 /* check strides etc */
|
Chris@10
|
235 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
|
Chris@10
|
236
|
Chris@10
|
237 && (batchsz = compute_batchsize(desc->n), 1)
|
Chris@10
|
238
|
Chris@10
|
239 && (0
|
Chris@10
|
240 /* can operate out-of-place */
|
Chris@10
|
241 || p->I != p->O
|
Chris@10
|
242
|
Chris@10
|
243 /* can operate in-place as long as strides are the same */
|
Chris@10
|
244 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
|
Chris@10
|
245
|
Chris@10
|
246 /* can do it if the problem fits in the buffer, no matter
|
Chris@10
|
247 what the strides are */
|
Chris@10
|
248 || vl <= batchsz
|
Chris@10
|
249 )
|
Chris@10
|
250 );
|
Chris@10
|
251 }
|
Chris@10
|
252
|
Chris@10
|
253 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
|
Chris@10
|
254 {
|
Chris@10
|
255 const S *ego = (const S *) ego_;
|
Chris@10
|
256 P *pln;
|
Chris@10
|
257 const problem_rdft *p;
|
Chris@10
|
258 iodim *d;
|
Chris@10
|
259 INT rs, cs, b, n;
|
Chris@10
|
260
|
Chris@10
|
261 static const plan_adt padt = {
|
Chris@10
|
262 X(rdft_solve), X(null_awake), print, destroy
|
Chris@10
|
263 };
|
Chris@10
|
264
|
Chris@10
|
265 UNUSED(plnr);
|
Chris@10
|
266
|
Chris@10
|
267 if (ego->bufferedp) {
|
Chris@10
|
268 if (!applicable_buf(ego_, p_))
|
Chris@10
|
269 return (plan *)0;
|
Chris@10
|
270 } else {
|
Chris@10
|
271 if (!applicable(ego_, p_))
|
Chris@10
|
272 return (plan *)0;
|
Chris@10
|
273 }
|
Chris@10
|
274
|
Chris@10
|
275 p = (const problem_rdft *) p_;
|
Chris@10
|
276
|
Chris@10
|
277 if (R2HC_KINDP(p->kind[0])) {
|
Chris@10
|
278 rs = p->sz->dims[0].is; cs = p->sz->dims[0].os;
|
Chris@10
|
279 pln = MKPLAN_RDFT(P, &padt,
|
Chris@10
|
280 ego->bufferedp ? apply_buf_r2hc : apply_r2hc);
|
Chris@10
|
281 } else {
|
Chris@10
|
282 rs = p->sz->dims[0].os; cs = p->sz->dims[0].is;
|
Chris@10
|
283 pln = MKPLAN_RDFT(P, &padt,
|
Chris@10
|
284 ego->bufferedp ? apply_buf_hc2r : apply_hc2r);
|
Chris@10
|
285 }
|
Chris@10
|
286
|
Chris@10
|
287 d = p->sz->dims;
|
Chris@10
|
288 n = d[0].n;
|
Chris@10
|
289
|
Chris@10
|
290 pln->k = ego->k;
|
Chris@10
|
291 pln->n = n;
|
Chris@10
|
292
|
Chris@10
|
293 pln->rs0 = rs;
|
Chris@10
|
294 pln->rs = X(mkstride)(n, 2 * rs);
|
Chris@10
|
295 pln->csr = X(mkstride)(n, cs);
|
Chris@10
|
296 pln->csi = X(mkstride)(n, -cs);
|
Chris@10
|
297 pln->ioffset = ioffset(p->kind[0], n, cs);
|
Chris@10
|
298
|
Chris@10
|
299 b = compute_batchsize(n);
|
Chris@10
|
300 pln->brs = X(mkstride)(n, 2 * b);
|
Chris@10
|
301 pln->bcsr = X(mkstride)(n, b);
|
Chris@10
|
302 pln->bcsi = X(mkstride)(n, -b);
|
Chris@10
|
303 pln->bioffset = ioffset(p->kind[0], n, b);
|
Chris@10
|
304
|
Chris@10
|
305 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
|
Chris@10
|
306
|
Chris@10
|
307 pln->slv = ego;
|
Chris@10
|
308 X(ops_zero)(&pln->super.super.ops);
|
Chris@10
|
309
|
Chris@10
|
310 X(ops_madd2)(pln->vl / ego->desc->genus->vl,
|
Chris@10
|
311 &ego->desc->ops,
|
Chris@10
|
312 &pln->super.super.ops);
|
Chris@10
|
313
|
Chris@10
|
314 if (ego->bufferedp)
|
Chris@10
|
315 pln->super.super.ops.other += 2 * n * pln->vl;
|
Chris@10
|
316
|
Chris@10
|
317 pln->super.super.could_prune_now_p = !ego->bufferedp;
|
Chris@10
|
318
|
Chris@10
|
319 return &(pln->super.super);
|
Chris@10
|
320 }
|
Chris@10
|
321
|
Chris@10
|
322 /* constructor */
|
Chris@10
|
323 static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp)
|
Chris@10
|
324 {
|
Chris@10
|
325 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
|
Chris@10
|
326 S *slv = MKSOLVER(S, &sadt);
|
Chris@10
|
327 slv->k = k;
|
Chris@10
|
328 slv->desc = desc;
|
Chris@10
|
329 slv->bufferedp = bufferedp;
|
Chris@10
|
330 return &(slv->super);
|
Chris@10
|
331 }
|
Chris@10
|
332
|
Chris@10
|
333 solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc)
|
Chris@10
|
334 {
|
Chris@10
|
335 return mksolver(k, desc, 0);
|
Chris@10
|
336 }
|
Chris@10
|
337
|
Chris@10
|
338 solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc)
|
Chris@10
|
339 {
|
Chris@10
|
340 return mksolver(k, desc, 1);
|
Chris@10
|
341 }
|