comparison src/fftw-3.3.3/rdft/direct-r2c.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
comparison
equal deleted inserted replaced
9:c0fb53affa76 10:37bf6b4a2645
1 /*
2 * Copyright (c) 2003, 2007-11 Matteo Frigo
3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 */
20
21
22 /* direct RDFT solver, using r2c codelets */
23
24 #include "rdft.h"
25
26 typedef struct {
27 solver super;
28 const kr2c_desc *desc;
29 kr2c k;
30 int bufferedp;
31 } S;
32
33 typedef struct {
34 plan_rdft super;
35
36 stride rs, csr, csi;
37 stride brs, bcsr, bcsi;
38 INT n, vl, rs0, ivs, ovs, ioffset, bioffset;
39 kr2c k;
40 const S *slv;
41 } P;
42
43 /*************************************************************
44 Nonbuffered code
45 *************************************************************/
46 static void apply_r2hc(const plan *ego_, R *I, R *O)
47 {
48 const P *ego = (const P *) ego_;
49 ASSERT_ALIGNED_DOUBLE;
50 ego->k(I, I + ego->rs0, O, O + ego->ioffset,
51 ego->rs, ego->csr, ego->csi,
52 ego->vl, ego->ivs, ego->ovs);
53 }
54
55 static void apply_hc2r(const plan *ego_, R *I, R *O)
56 {
57 const P *ego = (const P *) ego_;
58 ASSERT_ALIGNED_DOUBLE;
59 ego->k(O, O + ego->rs0, I, I + ego->ioffset,
60 ego->rs, ego->csr, ego->csi,
61 ego->vl, ego->ivs, ego->ovs);
62 }
63
64 /*************************************************************
65 Buffered code
66 *************************************************************/
67 /* should not be 2^k to avoid associativity conflicts */
68 static INT compute_batchsize(INT radix)
69 {
70 /* round up to multiple of 4 */
71 radix += 3;
72 radix &= -4;
73
74 return (radix + 2);
75 }
76
77 static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz)
78 {
79 X(cpy2d_ci)(I, buf,
80 ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1),
81 batchsz, ego->ivs, 1, 1);
82
83 if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) {
84 /* transform directly to output */
85 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
86 O, O + ego->ioffset,
87 ego->brs, ego->csr, ego->csi,
88 batchsz, 1, ego->ovs);
89 } else {
90 /* transform to buffer and copy back */
91 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
92 buf, buf + ego->bioffset,
93 ego->brs, ego->bcsr, ego->bcsi,
94 batchsz, 1, 1);
95 X(cpy2d_co)(buf, O,
96 ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1),
97 batchsz, 1, ego->ovs, 1);
98 }
99 }
100
101 static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz)
102 {
103 if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) {
104 /* transform directly from input */
105 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
106 I, I + ego->ioffset,
107 ego->brs, ego->csr, ego->csi,
108 batchsz, ego->ivs, 1);
109 } else {
110 /* copy into buffer and transform in place */
111 X(cpy2d_ci)(I, buf,
112 ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1),
113 batchsz, ego->ivs, 1, 1);
114 ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
115 buf, buf + ego->bioffset,
116 ego->brs, ego->bcsr, ego->bcsi,
117 batchsz, 1, 1);
118 }
119 X(cpy2d_co)(buf, O,
120 ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0,
121 batchsz, 1, ego->ovs, 1);
122 }
123
124 static void iterate(const P *ego, R *I, R *O,
125 void (*dobatch)(const P *ego, R *I, R *O,
126 R *buf, INT batchsz))
127 {
128 R *buf;
129 INT vl = ego->vl;
130 INT n = ego->n;
131 INT i;
132 INT batchsz = compute_batchsize(n);
133 size_t bufsz = n * batchsz * sizeof(R);
134
135 BUF_ALLOC(R *, buf, bufsz);
136
137 for (i = 0; i < vl - batchsz; i += batchsz) {
138 dobatch(ego, I, O, buf, batchsz);
139 I += batchsz * ego->ivs;
140 O += batchsz * ego->ovs;
141 }
142 dobatch(ego, I, O, buf, vl - i);
143
144 BUF_FREE(buf, bufsz);
145 }
146
147 static void apply_buf_r2hc(const plan *ego_, R *I, R *O)
148 {
149 iterate((const P *) ego_, I, O, dobatch_r2hc);
150 }
151
152 static void apply_buf_hc2r(const plan *ego_, R *I, R *O)
153 {
154 iterate((const P *) ego_, I, O, dobatch_hc2r);
155 }
156
157 static void destroy(plan *ego_)
158 {
159 P *ego = (P *) ego_;
160 X(stride_destroy)(ego->rs);
161 X(stride_destroy)(ego->csr);
162 X(stride_destroy)(ego->csi);
163 X(stride_destroy)(ego->brs);
164 X(stride_destroy)(ego->bcsr);
165 X(stride_destroy)(ego->bcsi);
166 }
167
168 static void print(const plan *ego_, printer *p)
169 {
170 const P *ego = (const P *) ego_;
171 const S *s = ego->slv;
172
173 if (ego->slv->bufferedp)
174 p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")",
175 X(rdft_kind_str)(s->desc->genus->kind),
176 /* hack */ WS(ego->bcsr, 1), ego->n,
177 ego->vl, s->desc->nam);
178
179 else
180 p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")",
181 X(rdft_kind_str)(s->desc->genus->kind), ego->n,
182 ego->vl, s->desc->nam);
183 }
184
185 static INT ioffset(rdft_kind kind, INT sz, INT s)
186 {
187 return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1)));
188 }
189
190 static int applicable(const solver *ego_, const problem *p_)
191 {
192 const S *ego = (const S *) ego_;
193 const kr2c_desc *desc = ego->desc;
194 const problem_rdft *p = (const problem_rdft *) p_;
195 INT vl, ivs, ovs;
196
197 return (
198 1
199 && p->sz->rnk == 1
200 && p->vecsz->rnk <= 1
201 && p->sz->dims[0].n == desc->n
202 && p->kind[0] == desc->genus->kind
203
204 /* check strides etc */
205 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
206
207 && (0
208 /* can operate out-of-place */
209 || p->I != p->O
210
211 /* computing one transform */
212 || vl == 1
213
214 /* can operate in-place as long as strides are the same */
215 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
216 )
217 );
218 }
219
220 static int applicable_buf(const solver *ego_, const problem *p_)
221 {
222 const S *ego = (const S *) ego_;
223 const kr2c_desc *desc = ego->desc;
224 const problem_rdft *p = (const problem_rdft *) p_;
225 INT vl, ivs, ovs, batchsz;
226
227 return (
228 1
229 && p->sz->rnk == 1
230 && p->vecsz->rnk <= 1
231 && p->sz->dims[0].n == desc->n
232 && p->kind[0] == desc->genus->kind
233
234 /* check strides etc */
235 && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
236
237 && (batchsz = compute_batchsize(desc->n), 1)
238
239 && (0
240 /* can operate out-of-place */
241 || p->I != p->O
242
243 /* can operate in-place as long as strides are the same */
244 || X(tensor_inplace_strides2)(p->sz, p->vecsz)
245
246 /* can do it if the problem fits in the buffer, no matter
247 what the strides are */
248 || vl <= batchsz
249 )
250 );
251 }
252
253 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
254 {
255 const S *ego = (const S *) ego_;
256 P *pln;
257 const problem_rdft *p;
258 iodim *d;
259 INT rs, cs, b, n;
260
261 static const plan_adt padt = {
262 X(rdft_solve), X(null_awake), print, destroy
263 };
264
265 UNUSED(plnr);
266
267 if (ego->bufferedp) {
268 if (!applicable_buf(ego_, p_))
269 return (plan *)0;
270 } else {
271 if (!applicable(ego_, p_))
272 return (plan *)0;
273 }
274
275 p = (const problem_rdft *) p_;
276
277 if (R2HC_KINDP(p->kind[0])) {
278 rs = p->sz->dims[0].is; cs = p->sz->dims[0].os;
279 pln = MKPLAN_RDFT(P, &padt,
280 ego->bufferedp ? apply_buf_r2hc : apply_r2hc);
281 } else {
282 rs = p->sz->dims[0].os; cs = p->sz->dims[0].is;
283 pln = MKPLAN_RDFT(P, &padt,
284 ego->bufferedp ? apply_buf_hc2r : apply_hc2r);
285 }
286
287 d = p->sz->dims;
288 n = d[0].n;
289
290 pln->k = ego->k;
291 pln->n = n;
292
293 pln->rs0 = rs;
294 pln->rs = X(mkstride)(n, 2 * rs);
295 pln->csr = X(mkstride)(n, cs);
296 pln->csi = X(mkstride)(n, -cs);
297 pln->ioffset = ioffset(p->kind[0], n, cs);
298
299 b = compute_batchsize(n);
300 pln->brs = X(mkstride)(n, 2 * b);
301 pln->bcsr = X(mkstride)(n, b);
302 pln->bcsi = X(mkstride)(n, -b);
303 pln->bioffset = ioffset(p->kind[0], n, b);
304
305 X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
306
307 pln->slv = ego;
308 X(ops_zero)(&pln->super.super.ops);
309
310 X(ops_madd2)(pln->vl / ego->desc->genus->vl,
311 &ego->desc->ops,
312 &pln->super.super.ops);
313
314 if (ego->bufferedp)
315 pln->super.super.ops.other += 2 * n * pln->vl;
316
317 pln->super.super.could_prune_now_p = !ego->bufferedp;
318
319 return &(pln->super.super);
320 }
321
322 /* constructor */
323 static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp)
324 {
325 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
326 S *slv = MKSOLVER(S, &sadt);
327 slv->k = k;
328 slv->desc = desc;
329 slv->bufferedp = bufferedp;
330 return &(slv->super);
331 }
332
333 solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc)
334 {
335 return mksolver(k, desc, 0);
336 }
337
338 solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc)
339 {
340 return mksolver(k, desc, 1);
341 }