diff src/fftw-3.3.3/rdft/direct-r2c.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/fftw-3.3.3/rdft/direct-r2c.c	Wed Mar 20 15:35:50 2013 +0000
@@ -0,0 +1,341 @@
+/*
+ * Copyright (c) 2003, 2007-11 Matteo Frigo
+ * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
+ *
+ */
+
+
+/* direct RDFT solver, using r2c codelets */
+
+#include "rdft.h"
+
+typedef struct {
+     solver super;
+     const kr2c_desc *desc;
+     kr2c k;
+     int bufferedp;
+} S;
+
+typedef struct {
+     plan_rdft super;
+
+     stride rs, csr, csi;
+     stride brs, bcsr, bcsi;
+     INT n, vl, rs0, ivs, ovs, ioffset, bioffset;
+     kr2c k;
+     const S *slv;
+} P;
+
+/*************************************************************
+  Nonbuffered code
+ *************************************************************/
+static void apply_r2hc(const plan *ego_, R *I, R *O)
+{
+     const P *ego = (const P *) ego_;
+     ASSERT_ALIGNED_DOUBLE;
+     ego->k(I, I + ego->rs0, O, O + ego->ioffset, 
+	    ego->rs, ego->csr, ego->csi,
+	    ego->vl, ego->ivs, ego->ovs);
+}
+
+static void apply_hc2r(const plan *ego_, R *I, R *O)
+{
+     const P *ego = (const P *) ego_;
+     ASSERT_ALIGNED_DOUBLE;
+     ego->k(O, O + ego->rs0, I, I + ego->ioffset, 
+	    ego->rs, ego->csr, ego->csi,
+	    ego->vl, ego->ivs, ego->ovs);
+}
+
+/*************************************************************
+  Buffered code
+ *************************************************************/
+/* should not be 2^k to avoid associativity conflicts */
+static INT compute_batchsize(INT radix)
+{
+     /* round up to multiple of 4 */
+     radix += 3;
+     radix &= -4;
+
+     return (radix + 2);
+}
+
+static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz)
+{
+     X(cpy2d_ci)(I, buf,
+		 ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1),
+		 batchsz, ego->ivs, 1, 1);
+
+     if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) {
+	  /* transform directly to output */
+	  ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), 
+		 O, O + ego->ioffset, 
+		 ego->brs, ego->csr, ego->csi,
+		 batchsz, 1, ego->ovs);
+     } else {
+	  /* transform to buffer and copy back */
+	  ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), 
+		 buf, buf + ego->bioffset, 
+		 ego->brs, ego->bcsr, ego->bcsi,
+		 batchsz, 1, 1);
+	  X(cpy2d_co)(buf, O,
+		      ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1),  
+		      batchsz, 1, ego->ovs, 1);
+     }
+}
+
+static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz)
+{
+     if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) {
+	  /* transform directly from input */
+	  ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
+		 I, I + ego->ioffset, 
+		 ego->brs, ego->csr, ego->csi,
+		 batchsz, ego->ivs, 1);
+     } else {
+	  /* copy into buffer and transform in place */
+	  X(cpy2d_ci)(I, buf,
+		      ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1),
+		      batchsz, ego->ivs, 1, 1);
+	  ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
+		 buf, buf + ego->bioffset, 
+		 ego->brs, ego->bcsr, ego->bcsi,
+		 batchsz, 1, 1);
+     }
+     X(cpy2d_co)(buf, O,
+		 ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0,
+		 batchsz, 1, ego->ovs, 1);
+}
+
+static void iterate(const P *ego, R *I, R *O,
+		    void (*dobatch)(const P *ego, R *I, R *O, 
+				    R *buf, INT batchsz))
+{
+     R *buf;
+     INT vl = ego->vl;
+     INT n = ego->n;
+     INT i;
+     INT batchsz = compute_batchsize(n);
+     size_t bufsz = n * batchsz * sizeof(R);
+
+     BUF_ALLOC(R *, buf, bufsz);
+
+     for (i = 0; i < vl - batchsz; i += batchsz) {
+	  dobatch(ego, I, O, buf, batchsz);
+	  I += batchsz * ego->ivs;
+	  O += batchsz * ego->ovs;
+     }
+     dobatch(ego, I, O, buf, vl - i);
+
+     BUF_FREE(buf, bufsz);
+}
+
+static void apply_buf_r2hc(const plan *ego_, R *I, R *O)
+{
+     iterate((const P *) ego_, I, O, dobatch_r2hc);
+}
+
+static void apply_buf_hc2r(const plan *ego_, R *I, R *O)
+{
+     iterate((const P *) ego_, I, O, dobatch_hc2r);
+}
+
+static void destroy(plan *ego_)
+{
+     P *ego = (P *) ego_;
+     X(stride_destroy)(ego->rs);
+     X(stride_destroy)(ego->csr);
+     X(stride_destroy)(ego->csi);
+     X(stride_destroy)(ego->brs);
+     X(stride_destroy)(ego->bcsr);
+     X(stride_destroy)(ego->bcsi);
+}
+
+static void print(const plan *ego_, printer *p)
+{
+     const P *ego = (const P *) ego_;
+     const S *s = ego->slv;
+
+     if (ego->slv->bufferedp)
+	  p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")", 
+		   X(rdft_kind_str)(s->desc->genus->kind), 
+		   /* hack */ WS(ego->bcsr, 1), ego->n, 
+		   ego->vl, s->desc->nam);
+
+     else 
+	  p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")", 
+		   X(rdft_kind_str)(s->desc->genus->kind), ego->n, 
+		   ego->vl, s->desc->nam);
+}
+
+static INT ioffset(rdft_kind kind, INT sz, INT s)
+{
+     return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1)));
+}
+
+static int applicable(const solver *ego_, const problem *p_)
+{
+     const S *ego = (const S *) ego_;
+     const kr2c_desc *desc = ego->desc;
+     const problem_rdft *p = (const problem_rdft *) p_;
+     INT vl, ivs, ovs;
+
+     return (
+	  1
+	  && p->sz->rnk == 1
+	  && p->vecsz->rnk <= 1
+	  && p->sz->dims[0].n == desc->n
+	  && p->kind[0] == desc->genus->kind
+
+	  /* check strides etc */
+	  && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
+
+	  && (0
+	      /* can operate out-of-place */
+	      || p->I != p->O
+
+	      /* computing one transform */
+	      || vl == 1
+
+	      /* can operate in-place as long as strides are the same */
+	      || X(tensor_inplace_strides2)(p->sz, p->vecsz)
+	       )
+	  );
+}
+
+static int applicable_buf(const solver *ego_, const problem *p_)
+{
+     const S *ego = (const S *) ego_;
+     const kr2c_desc *desc = ego->desc;
+     const problem_rdft *p = (const problem_rdft *) p_;
+     INT vl, ivs, ovs, batchsz;
+
+     return (
+	  1
+	  && p->sz->rnk == 1
+	  && p->vecsz->rnk <= 1
+	  && p->sz->dims[0].n == desc->n
+	  && p->kind[0] == desc->genus->kind
+
+	  /* check strides etc */
+	  && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
+
+	  && (batchsz = compute_batchsize(desc->n), 1)
+
+	  && (0
+	      /* can operate out-of-place */
+	      || p->I != p->O
+
+	      /* can operate in-place as long as strides are the same */
+	      || X(tensor_inplace_strides2)(p->sz, p->vecsz)
+
+	      /* can do it if the problem fits in the buffer, no matter
+		 what the strides are */
+	      || vl <= batchsz
+	       )
+	  );
+}
+
+static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
+{
+     const S *ego = (const S *) ego_;
+     P *pln;
+     const problem_rdft *p;
+     iodim *d;
+     INT rs, cs, b, n;
+
+     static const plan_adt padt = {
+	  X(rdft_solve), X(null_awake), print, destroy
+     };
+
+     UNUSED(plnr);
+
+     if (ego->bufferedp) {
+	  if (!applicable_buf(ego_, p_))
+	       return (plan *)0;
+     } else {
+	  if (!applicable(ego_, p_))
+	       return (plan *)0;
+     }
+
+     p = (const problem_rdft *) p_;
+
+     if (R2HC_KINDP(p->kind[0])) {
+	  rs = p->sz->dims[0].is; cs = p->sz->dims[0].os;
+	  pln = MKPLAN_RDFT(P, &padt, 
+			    ego->bufferedp ? apply_buf_r2hc : apply_r2hc);
+     } else {
+	  rs = p->sz->dims[0].os; cs = p->sz->dims[0].is;
+	  pln = MKPLAN_RDFT(P, &padt, 
+			    ego->bufferedp ? apply_buf_hc2r : apply_hc2r);
+     }
+
+     d = p->sz->dims;
+     n = d[0].n;
+
+     pln->k = ego->k;
+     pln->n = n;
+
+     pln->rs0 = rs;
+     pln->rs = X(mkstride)(n, 2 * rs);
+     pln->csr = X(mkstride)(n, cs);
+     pln->csi = X(mkstride)(n, -cs);
+     pln->ioffset = ioffset(p->kind[0], n, cs);
+
+     b = compute_batchsize(n);
+     pln->brs = X(mkstride)(n, 2 * b);
+     pln->bcsr = X(mkstride)(n, b);
+     pln->bcsi = X(mkstride)(n, -b);
+     pln->bioffset = ioffset(p->kind[0], n, b);
+
+     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
+
+     pln->slv = ego;
+     X(ops_zero)(&pln->super.super.ops);
+
+     X(ops_madd2)(pln->vl / ego->desc->genus->vl,
+		  &ego->desc->ops,
+		  &pln->super.super.ops);
+
+     if (ego->bufferedp) 
+	  pln->super.super.ops.other += 2 * n * pln->vl;
+
+     pln->super.super.could_prune_now_p = !ego->bufferedp;
+
+     return &(pln->super.super);
+}
+
+/* constructor */
+static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp)
+{
+     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
+     S *slv = MKSOLVER(S, &sadt);
+     slv->k = k;
+     slv->desc = desc;
+     slv->bufferedp = bufferedp;
+     return &(slv->super);
+}
+
+solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc)
+{
+     return mksolver(k, desc, 0);
+}
+
+solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc)
+{
+     return mksolver(k, desc, 1);
+}