Mercurial > hg > sv-dependency-builds
diff src/fftw-3.3.3/rdft/direct-r2c.c @ 10:37bf6b4a2645
Add FFTW3
author | Chris Cannam |
---|---|
date | Wed, 20 Mar 2013 15:35:50 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/fftw-3.3.3/rdft/direct-r2c.c Wed Mar 20 15:35:50 2013 +0000 @@ -0,0 +1,341 @@ +/* + * Copyright (c) 2003, 2007-11 Matteo Frigo + * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + + +/* direct RDFT solver, using r2c codelets */ + +#include "rdft.h" + +typedef struct { + solver super; + const kr2c_desc *desc; + kr2c k; + int bufferedp; +} S; + +typedef struct { + plan_rdft super; + + stride rs, csr, csi; + stride brs, bcsr, bcsi; + INT n, vl, rs0, ivs, ovs, ioffset, bioffset; + kr2c k; + const S *slv; +} P; + +/************************************************************* + Nonbuffered code + *************************************************************/ +static void apply_r2hc(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + ASSERT_ALIGNED_DOUBLE; + ego->k(I, I + ego->rs0, O, O + ego->ioffset, + ego->rs, ego->csr, ego->csi, + ego->vl, ego->ivs, ego->ovs); +} + +static void apply_hc2r(const plan *ego_, R *I, R *O) +{ + const P *ego = (const P *) ego_; + ASSERT_ALIGNED_DOUBLE; + ego->k(O, O + ego->rs0, I, I + ego->ioffset, + ego->rs, ego->csr, ego->csi, + ego->vl, ego->ivs, ego->ovs); +} + +/************************************************************* + Buffered code + *************************************************************/ +/* should not be 2^k to avoid associativity conflicts */ +static INT compute_batchsize(INT radix) +{ + /* round up to multiple of 4 */ + radix += 3; + radix &= -4; + + return (radix + 2); +} + +static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz) +{ + X(cpy2d_ci)(I, buf, + ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1), + batchsz, ego->ivs, 1, 1); + + if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) { + /* transform directly to output */ + ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), + O, O + ego->ioffset, + ego->brs, ego->csr, ego->csi, + batchsz, 1, ego->ovs); + } else { + /* transform to buffer and copy back */ + ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), + buf, buf + ego->bioffset, + ego->brs, ego->bcsr, ego->bcsi, + batchsz, 1, 1); + X(cpy2d_co)(buf, O, + ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1), + batchsz, 1, ego->ovs, 1); + } +} + +static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz) +{ + if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) { + /* transform directly from input */ + ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), + I, I + ego->ioffset, + ego->brs, ego->csr, ego->csi, + batchsz, ego->ivs, 1); + } else { + /* copy into buffer and transform in place */ + X(cpy2d_ci)(I, buf, + ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1), + batchsz, ego->ivs, 1, 1); + ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), + buf, buf + ego->bioffset, + ego->brs, ego->bcsr, ego->bcsi, + batchsz, 1, 1); + } + X(cpy2d_co)(buf, O, + ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0, + batchsz, 1, ego->ovs, 1); +} + +static void iterate(const P *ego, R *I, R *O, + void (*dobatch)(const P *ego, R *I, R *O, + R *buf, INT batchsz)) +{ + R *buf; + INT vl = ego->vl; + INT n = ego->n; + INT i; + INT batchsz = compute_batchsize(n); + size_t bufsz = n * batchsz * sizeof(R); + + BUF_ALLOC(R *, buf, bufsz); + + for (i = 0; i < vl - batchsz; i += batchsz) { + dobatch(ego, I, O, buf, batchsz); + I += batchsz * ego->ivs; + O += batchsz * ego->ovs; + } + dobatch(ego, I, O, buf, vl - i); + + BUF_FREE(buf, bufsz); +} + +static void apply_buf_r2hc(const plan *ego_, R *I, R *O) +{ + iterate((const P *) ego_, I, O, dobatch_r2hc); +} + +static void apply_buf_hc2r(const plan *ego_, R *I, R *O) +{ + iterate((const P *) ego_, I, O, dobatch_hc2r); +} + +static void destroy(plan *ego_) +{ + P *ego = (P *) ego_; + X(stride_destroy)(ego->rs); + X(stride_destroy)(ego->csr); + X(stride_destroy)(ego->csi); + X(stride_destroy)(ego->brs); + X(stride_destroy)(ego->bcsr); + X(stride_destroy)(ego->bcsi); +} + +static void print(const plan *ego_, printer *p) +{ + const P *ego = (const P *) ego_; + const S *s = ego->slv; + + if (ego->slv->bufferedp) + p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")", + X(rdft_kind_str)(s->desc->genus->kind), + /* hack */ WS(ego->bcsr, 1), ego->n, + ego->vl, s->desc->nam); + + else + p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")", + X(rdft_kind_str)(s->desc->genus->kind), ego->n, + ego->vl, s->desc->nam); +} + +static INT ioffset(rdft_kind kind, INT sz, INT s) +{ + return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1))); +} + +static int applicable(const solver *ego_, const problem *p_) +{ + const S *ego = (const S *) ego_; + const kr2c_desc *desc = ego->desc; + const problem_rdft *p = (const problem_rdft *) p_; + INT vl, ivs, ovs; + + return ( + 1 + && p->sz->rnk == 1 + && p->vecsz->rnk <= 1 + && p->sz->dims[0].n == desc->n + && p->kind[0] == desc->genus->kind + + /* check strides etc */ + && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) + + && (0 + /* can operate out-of-place */ + || p->I != p->O + + /* computing one transform */ + || vl == 1 + + /* can operate in-place as long as strides are the same */ + || X(tensor_inplace_strides2)(p->sz, p->vecsz) + ) + ); +} + +static int applicable_buf(const solver *ego_, const problem *p_) +{ + const S *ego = (const S *) ego_; + const kr2c_desc *desc = ego->desc; + const problem_rdft *p = (const problem_rdft *) p_; + INT vl, ivs, ovs, batchsz; + + return ( + 1 + && p->sz->rnk == 1 + && p->vecsz->rnk <= 1 + && p->sz->dims[0].n == desc->n + && p->kind[0] == desc->genus->kind + + /* check strides etc */ + && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs) + + && (batchsz = compute_batchsize(desc->n), 1) + + && (0 + /* can operate out-of-place */ + || p->I != p->O + + /* can operate in-place as long as strides are the same */ + || X(tensor_inplace_strides2)(p->sz, p->vecsz) + + /* can do it if the problem fits in the buffer, no matter + what the strides are */ + || vl <= batchsz + ) + ); +} + +static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr) +{ + const S *ego = (const S *) ego_; + P *pln; + const problem_rdft *p; + iodim *d; + INT rs, cs, b, n; + + static const plan_adt padt = { + X(rdft_solve), X(null_awake), print, destroy + }; + + UNUSED(plnr); + + if (ego->bufferedp) { + if (!applicable_buf(ego_, p_)) + return (plan *)0; + } else { + if (!applicable(ego_, p_)) + return (plan *)0; + } + + p = (const problem_rdft *) p_; + + if (R2HC_KINDP(p->kind[0])) { + rs = p->sz->dims[0].is; cs = p->sz->dims[0].os; + pln = MKPLAN_RDFT(P, &padt, + ego->bufferedp ? apply_buf_r2hc : apply_r2hc); + } else { + rs = p->sz->dims[0].os; cs = p->sz->dims[0].is; + pln = MKPLAN_RDFT(P, &padt, + ego->bufferedp ? apply_buf_hc2r : apply_hc2r); + } + + d = p->sz->dims; + n = d[0].n; + + pln->k = ego->k; + pln->n = n; + + pln->rs0 = rs; + pln->rs = X(mkstride)(n, 2 * rs); + pln->csr = X(mkstride)(n, cs); + pln->csi = X(mkstride)(n, -cs); + pln->ioffset = ioffset(p->kind[0], n, cs); + + b = compute_batchsize(n); + pln->brs = X(mkstride)(n, 2 * b); + pln->bcsr = X(mkstride)(n, b); + pln->bcsi = X(mkstride)(n, -b); + pln->bioffset = ioffset(p->kind[0], n, b); + + X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs); + + pln->slv = ego; + X(ops_zero)(&pln->super.super.ops); + + X(ops_madd2)(pln->vl / ego->desc->genus->vl, + &ego->desc->ops, + &pln->super.super.ops); + + if (ego->bufferedp) + pln->super.super.ops.other += 2 * n * pln->vl; + + pln->super.super.could_prune_now_p = !ego->bufferedp; + + return &(pln->super.super); +} + +/* constructor */ +static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp) +{ + static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 }; + S *slv = MKSOLVER(S, &sadt); + slv->k = k; + slv->desc = desc; + slv->bufferedp = bufferedp; + return &(slv->super); +} + +solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc) +{ + return mksolver(k, desc, 0); +} + +solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc) +{ + return mksolver(k, desc, 1); +}