max@1
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
max@1
|
2
|
max@1
|
3 /*
|
max@1
|
4 QM Vamp Plugin Set
|
max@1
|
5
|
max@1
|
6 Centre for Digital Music, Queen Mary, University of London.
|
max@1
|
7
|
max@1
|
8 This program is free software; you can redistribute it and/or
|
max@1
|
9 modify it under the terms of the GNU General Public License as
|
max@1
|
10 published by the Free Software Foundation; either version 2 of the
|
max@1
|
11 License, or (at your option) any later version. See the file
|
max@1
|
12 COPYING included with this distribution for more information.
|
max@1
|
13 */
|
max@1
|
14
|
max@1
|
15 #include "SongParts.h"
|
max@1
|
16
|
max@1
|
17 #include <base/Window.h>
|
max@1
|
18 #include <dsp/onsets/DetectionFunction.h>
|
max@1
|
19 #include <dsp/onsets/PeakPicking.h>
|
max@1
|
20 #include <dsp/transforms/FFT.h>
|
max@1
|
21 #include <dsp/tempotracking/TempoTrackV2.h>
|
max@1
|
22 #include <dsp/tempotracking/DownBeat.h>
|
max@1
|
23 #include <chromamethods.h>
|
max@1
|
24 #include <maths/MathUtilities.h>
|
max@1
|
25 #include <boost/numeric/ublas/matrix.hpp>
|
max@1
|
26 #include <boost/numeric/ublas/io.hpp>
|
max@1
|
27 #include <boost/math/distributions/normal.hpp>
|
max@1
|
28 #include "armadillo"
|
max@1
|
29 #include <fstream>
|
max@1
|
30 #include <sstream>
|
max@1
|
31 #include <cmath>
|
max@1
|
32 #include <vector>
|
max@1
|
33
|
max@1
|
34 #include <vamp-sdk/Plugin.h>
|
max@1
|
35
|
max@1
|
36 using namespace boost::numeric;
|
max@1
|
37 using namespace arma;
|
max@1
|
38 using std::string;
|
max@1
|
39 using std::vector;
|
max@1
|
40 using std::cerr;
|
max@1
|
41 using std::cout;
|
max@1
|
42 using std::endl;
|
max@1
|
43
|
max@1
|
44
|
max@1
|
45 #ifndef __GNUC__
|
max@1
|
46 #include <alloca.h>
|
max@1
|
47 #endif
|
max@1
|
48
|
max@1
|
49
|
max@1
|
50 // Result Struct
|
max@1
|
51 typedef struct Part {
|
max@1
|
52 int n;
|
Chris@21
|
53 vector<int> indices;
|
max@1
|
54 string letter;
|
Chris@21
|
55 int value;
|
max@1
|
56 int level;
|
max@1
|
57 int nInd;
|
max@1
|
58 }Part;
|
max@1
|
59
|
max@1
|
60
|
max@8
|
61
|
max@1
|
62 /* ------------------------------------ */
|
max@1
|
63 /* ----- BEAT DETECTOR CLASS ---------- */
|
max@1
|
64 /* ------------------------------------ */
|
max@1
|
65
|
max@1
|
66 class BeatTrackerData
|
max@1
|
67 {
|
max@1
|
68 /* --- ATTRIBUTES --- */
|
max@1
|
69 public:
|
max@1
|
70 DFConfig dfConfig;
|
max@1
|
71 DetectionFunction *df;
|
max@1
|
72 DownBeat *downBeat;
|
max@1
|
73 vector<double> dfOutput;
|
max@1
|
74 Vamp::RealTime origin;
|
max@1
|
75
|
max@1
|
76
|
max@1
|
77 /* --- METHODS --- */
|
max@1
|
78
|
max@1
|
79 /* --- Constructor --- */
|
max@1
|
80 public:
|
max@1
|
81 BeatTrackerData(float rate, const DFConfig &config) : dfConfig(config) {
|
Chris@22
|
82
|
max@1
|
83 df = new DetectionFunction(config);
|
max@1
|
84 // decimation factor aims at resampling to c. 3KHz; must be power of 2
|
max@1
|
85 int factor = MathUtilities::nextPowerOfTwo(rate / 3000);
|
max@1
|
86 // std::cerr << "BeatTrackerData: factor = " << factor << std::endl;
|
max@1
|
87 downBeat = new DownBeat(rate, factor, config.stepSize);
|
max@1
|
88 }
|
max@1
|
89
|
max@1
|
90 /* --- Desctructor --- */
|
max@1
|
91 ~BeatTrackerData() {
|
Chris@22
|
92 delete df;
|
max@1
|
93 delete downBeat;
|
max@1
|
94 }
|
max@1
|
95
|
max@1
|
96 void reset() {
|
max@1
|
97 delete df;
|
max@1
|
98 df = new DetectionFunction(dfConfig);
|
max@1
|
99 dfOutput.clear();
|
max@1
|
100 downBeat->resetAudioBuffer();
|
max@1
|
101 origin = Vamp::RealTime::zeroTime;
|
max@1
|
102 }
|
max@1
|
103 };
|
max@1
|
104
|
max@1
|
105
|
max@1
|
106 /* --------------------------------------- */
|
max@1
|
107 /* ----- CHROMA EXTRACTOR CLASS ---------- */
|
max@1
|
108 /* --------------------------------------- */
|
max@1
|
109
|
max@1
|
110 class ChromaData
|
max@1
|
111 {
|
max@1
|
112
|
max@1
|
113 /* --- ATTRIBUTES --- */
|
max@1
|
114
|
max@1
|
115 public:
|
max@1
|
116 int frameCount;
|
max@1
|
117 int nBPS;
|
max@1
|
118 Vamp::Plugin::FeatureList logSpectrum;
|
max@1
|
119 size_t blockSize;
|
max@1
|
120 int lengthOfNoteIndex;
|
max@1
|
121 vector<float> meanTunings;
|
max@1
|
122 vector<float> localTunings;
|
max@1
|
123 float whitening;
|
max@1
|
124 float preset;
|
max@1
|
125 float useNNLS;
|
max@1
|
126 vector<float> localTuning;
|
max@1
|
127 vector<float> kernelValue;
|
max@1
|
128 vector<int> kernelFftIndex;
|
max@1
|
129 vector<int> kernelNoteIndex;
|
max@1
|
130 float *dict;
|
max@1
|
131 bool tuneLocal;
|
max@1
|
132 float doNormalizeChroma;
|
max@1
|
133 float rollon;
|
max@1
|
134 float s;
|
max@1
|
135 vector<float> hw;
|
max@1
|
136 vector<float> sinvalues;
|
max@1
|
137 vector<float> cosvalues;
|
max@1
|
138 Window<float> window;
|
max@1
|
139 FFTReal fft;
|
max@1
|
140 size_t inputSampleRate;
|
max@1
|
141
|
max@1
|
142 /* --- METHODS --- */
|
max@1
|
143
|
max@1
|
144 /* --- Constructor --- */
|
max@1
|
145
|
max@1
|
146 public:
|
max@1
|
147 ChromaData(float inputSampleRate, size_t block_size) :
|
max@1
|
148 frameCount(0),
|
max@1
|
149 nBPS(3),
|
max@1
|
150 logSpectrum(0),
|
max@1
|
151 blockSize(0),
|
max@1
|
152 lengthOfNoteIndex(0),
|
max@1
|
153 meanTunings(0),
|
max@1
|
154 localTunings(0),
|
max@1
|
155 whitening(1.0),
|
max@1
|
156 preset(0.0),
|
max@1
|
157 useNNLS(1.0),
|
max@1
|
158 localTuning(0.0),
|
max@1
|
159 kernelValue(0),
|
max@1
|
160 kernelFftIndex(0),
|
max@1
|
161 kernelNoteIndex(0),
|
max@1
|
162 dict(0),
|
max@1
|
163 tuneLocal(0.0),
|
max@1
|
164 doNormalizeChroma(0),
|
max@1
|
165 rollon(0.0),
|
Chris@35
|
166 s(0.7),
|
Chris@35
|
167 sinvalues(0),
|
Chris@35
|
168 cosvalues(0),
|
Chris@35
|
169 window(HanningWindow, block_size),
|
Chris@35
|
170 fft(block_size),
|
Chris@35
|
171 inputSampleRate(inputSampleRate)
|
max@1
|
172 {
|
max@1
|
173 // make the *note* dictionary matrix
|
max@1
|
174 dict = new float[nNote * 84];
|
max@1
|
175 for (int i = 0; i < nNote * 84; ++i) dict[i] = 0.0;
|
max@1
|
176 blockSize = block_size;
|
max@1
|
177 }
|
max@1
|
178
|
max@1
|
179
|
max@1
|
180 /* --- Desctructor --- */
|
max@1
|
181
|
max@1
|
182 ~ChromaData() {
|
max@1
|
183 delete [] dict;
|
max@1
|
184 }
|
max@1
|
185
|
max@1
|
186 /* --- Public Methods --- */
|
max@1
|
187
|
max@1
|
188 void reset() {
|
max@1
|
189 frameCount = 0;
|
max@1
|
190 logSpectrum.clear();
|
max@1
|
191 for (int iBPS = 0; iBPS < 3; ++iBPS) {
|
max@1
|
192 meanTunings[iBPS] = 0;
|
max@1
|
193 localTunings[iBPS] = 0;
|
max@1
|
194 }
|
max@1
|
195 localTuning.clear();
|
max@1
|
196 }
|
max@1
|
197
|
max@1
|
198 void baseProcess(float *inputBuffers, Vamp::RealTime timestamp)
|
max@1
|
199 {
|
Chris@22
|
200
|
max@1
|
201 frameCount++;
|
max@1
|
202 float *magnitude = new float[blockSize/2];
|
max@1
|
203 double *fftReal = new double[blockSize];
|
max@1
|
204 double *fftImag = new double[blockSize];
|
max@1
|
205
|
max@1
|
206 // FFTReal wants doubles, so we need to make a local copy of inputBuffers
|
max@1
|
207 double *inputBuffersDouble = new double[blockSize];
|
max@1
|
208 for (size_t i = 0; i < blockSize; i++) inputBuffersDouble[i] = inputBuffers[i];
|
max@1
|
209
|
max@1
|
210 fft.process(false, inputBuffersDouble, fftReal, fftImag);
|
max@1
|
211
|
max@1
|
212 float energysum = 0;
|
max@1
|
213 // make magnitude
|
max@1
|
214 float maxmag = -10000;
|
max@1
|
215 for (int iBin = 0; iBin < static_cast<int>(blockSize/2); iBin++) {
|
max@1
|
216 magnitude[iBin] = sqrt(fftReal[iBin] * fftReal[iBin] +
|
max@1
|
217 fftImag[iBin] * fftImag[iBin]);
|
max@1
|
218 if (magnitude[iBin]>blockSize*1.0) magnitude[iBin] = blockSize;
|
max@1
|
219 // a valid audio signal (between -1 and 1) should not be limited here.
|
max@1
|
220 if (maxmag < magnitude[iBin]) maxmag = magnitude[iBin];
|
max@1
|
221 if (rollon > 0) {
|
max@1
|
222 energysum += pow(magnitude[iBin],2);
|
max@1
|
223 }
|
max@1
|
224 }
|
max@1
|
225
|
max@1
|
226 float cumenergy = 0;
|
max@1
|
227 if (rollon > 0) {
|
max@1
|
228 for (int iBin = 2; iBin < static_cast<int>(blockSize/2); iBin++) {
|
max@1
|
229 cumenergy += pow(magnitude[iBin],2);
|
max@1
|
230 if (cumenergy < energysum * rollon / 100) magnitude[iBin-2] = 0;
|
max@1
|
231 else break;
|
max@1
|
232 }
|
max@1
|
233 }
|
max@1
|
234
|
max@1
|
235 if (maxmag < 2) {
|
max@1
|
236 // cerr << "timestamp " << timestamp << ": very low magnitude, setting magnitude to all zeros" << endl;
|
max@1
|
237 for (int iBin = 0; iBin < static_cast<int>(blockSize/2); iBin++) {
|
max@1
|
238 magnitude[iBin] = 0;
|
max@1
|
239 }
|
max@1
|
240 }
|
max@1
|
241
|
max@1
|
242 // cerr << magnitude[200] << endl;
|
max@1
|
243
|
max@1
|
244 // note magnitude mapping using pre-calculated matrix
|
max@1
|
245 float *nm = new float[nNote]; // note magnitude
|
max@1
|
246 for (int iNote = 0; iNote < nNote; iNote++) {
|
max@1
|
247 nm[iNote] = 0; // initialise as 0
|
max@1
|
248 }
|
max@1
|
249 int binCount = 0;
|
max@1
|
250 for (vector<float>::iterator it = kernelValue.begin(); it != kernelValue.end(); ++it) {
|
max@1
|
251 nm[kernelNoteIndex[binCount]] += magnitude[kernelFftIndex[binCount]] * kernelValue[binCount];
|
max@1
|
252 binCount++;
|
max@1
|
253 }
|
max@1
|
254
|
max@1
|
255 float one_over_N = 1.0/frameCount;
|
max@1
|
256 // update means of complex tuning variables
|
max@1
|
257 for (int iBPS = 0; iBPS < nBPS; ++iBPS) meanTunings[iBPS] *= float(frameCount-1)*one_over_N;
|
max@1
|
258
|
max@1
|
259 for (int iTone = 0; iTone < round(nNote*0.62/nBPS)*nBPS+1; iTone = iTone + nBPS) {
|
max@1
|
260 for (int iBPS = 0; iBPS < nBPS; ++iBPS) meanTunings[iBPS] += nm[iTone + iBPS]*one_over_N;
|
max@1
|
261 float ratioOld = 0.997;
|
max@1
|
262 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
|
max@1
|
263 localTunings[iBPS] *= ratioOld;
|
max@1
|
264 localTunings[iBPS] += nm[iTone + iBPS] * (1 - ratioOld);
|
max@1
|
265 }
|
max@1
|
266 }
|
max@1
|
267
|
max@1
|
268 float localTuningImag = 0;
|
max@1
|
269 float localTuningReal = 0;
|
max@1
|
270 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
|
max@1
|
271 localTuningReal += localTunings[iBPS] * cosvalues[iBPS];
|
max@1
|
272 localTuningImag += localTunings[iBPS] * sinvalues[iBPS];
|
max@1
|
273 }
|
max@1
|
274
|
max@1
|
275 float normalisedtuning = atan2(localTuningImag, localTuningReal)/(2*M_PI);
|
max@1
|
276 localTuning.push_back(normalisedtuning);
|
max@1
|
277
|
max@1
|
278 Vamp::Plugin::Feature f1; // logfreqspec
|
max@1
|
279 f1.hasTimestamp = true;
|
max@1
|
280 f1.timestamp = timestamp;
|
max@1
|
281 for (int iNote = 0; iNote < nNote; iNote++) {
|
max@1
|
282 f1.values.push_back(nm[iNote]);
|
max@1
|
283 }
|
max@1
|
284
|
max@1
|
285 // deletes
|
max@1
|
286 delete[] inputBuffersDouble;
|
max@1
|
287 delete[] magnitude;
|
max@1
|
288 delete[] fftReal;
|
max@1
|
289 delete[] fftImag;
|
max@1
|
290 delete[] nm;
|
max@1
|
291
|
max@1
|
292 logSpectrum.push_back(f1); // remember note magnitude
|
max@1
|
293 }
|
max@1
|
294
|
max@1
|
295 bool initialise()
|
max@1
|
296 {
|
max@1
|
297 dictionaryMatrix(dict, s);
|
Chris@22
|
298
|
Chris@22
|
299 // make things for tuning estimation
|
Chris@22
|
300 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
|
max@1
|
301 sinvalues.push_back(sin(2*M_PI*(iBPS*1.0/nBPS)));
|
max@1
|
302 cosvalues.push_back(cos(2*M_PI*(iBPS*1.0/nBPS)));
|
max@1
|
303 }
|
max@1
|
304
|
Chris@22
|
305
|
Chris@22
|
306 // make hamming window of length 1/2 octave
|
Chris@22
|
307 int hamwinlength = nBPS * 6 + 1;
|
max@1
|
308 float hamwinsum = 0;
|
max@1
|
309 for (int i = 0; i < hamwinlength; ++i) {
|
max@1
|
310 hw.push_back(0.54 - 0.46 * cos((2*M_PI*i)/(hamwinlength-1)));
|
max@1
|
311 hamwinsum += 0.54 - 0.46 * cos((2*M_PI*i)/(hamwinlength-1));
|
max@1
|
312 }
|
max@1
|
313 for (int i = 0; i < hamwinlength; ++i) hw[i] = hw[i] / hamwinsum;
|
max@1
|
314
|
max@1
|
315
|
max@1
|
316 // initialise the tuning
|
max@1
|
317 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
|
max@1
|
318 meanTunings.push_back(0);
|
max@1
|
319 localTunings.push_back(0);
|
max@1
|
320 }
|
Chris@22
|
321
|
max@1
|
322 blockSize = blockSize;
|
max@1
|
323 frameCount = 0;
|
max@1
|
324 int tempn = nNote * blockSize/2;
|
max@1
|
325 // cerr << "length of tempkernel : " << tempn << endl;
|
max@1
|
326 float *tempkernel;
|
max@1
|
327
|
max@1
|
328 tempkernel = new float[tempn];
|
max@1
|
329
|
max@1
|
330 logFreqMatrix(inputSampleRate, blockSize, tempkernel);
|
max@1
|
331 kernelValue.clear();
|
max@1
|
332 kernelFftIndex.clear();
|
max@1
|
333 kernelNoteIndex.clear();
|
max@1
|
334 int countNonzero = 0;
|
max@1
|
335 for (int iNote = 0; iNote < nNote; ++iNote) {
|
max@1
|
336 // I don't know if this is wise: manually making a sparse matrix
|
max@1
|
337 for (int iFFT = 0; iFFT < static_cast<int>(blockSize/2); ++iFFT) {
|
max@1
|
338 if (tempkernel[iFFT + blockSize/2 * iNote] > 0) {
|
max@1
|
339 kernelValue.push_back(tempkernel[iFFT + blockSize/2 * iNote]);
|
max@1
|
340 if (tempkernel[iFFT + blockSize/2 * iNote] > 0) {
|
max@1
|
341 countNonzero++;
|
max@1
|
342 }
|
max@1
|
343 kernelFftIndex.push_back(iFFT);
|
Chris@23
|
344 kernelNoteIndex.push_back(iNote);
|
max@1
|
345 }
|
max@1
|
346 }
|
max@1
|
347 }
|
max@1
|
348 delete [] tempkernel;
|
max@1
|
349 }
|
max@1
|
350 };
|
max@1
|
351
|
max@1
|
352
|
max@1
|
353 /* --------------------------------- */
|
max@1
|
354 /* ----- SONG PARTITIONER ---------- */
|
max@1
|
355 /* --------------------------------- */
|
max@1
|
356
|
max@1
|
357
|
max@1
|
358 /* --- ATTRIBUTES --- */
|
max@1
|
359
|
max@1
|
360 float SongPartitioner::m_stepSecs = 0.01161; // 512 samples at 44100
|
max@1
|
361 size_t SongPartitioner::m_chromaFramesizeFactor = 16; // 16 times as long as beat tracker's
|
max@1
|
362 size_t SongPartitioner::m_chromaStepsizeFactor = 4; // 4 times as long as beat tracker's
|
max@1
|
363
|
max@1
|
364
|
max@1
|
365 /* --- METHODS --- */
|
max@1
|
366
|
max@1
|
367 /* --- Constructor --- */
|
max@1
|
368 SongPartitioner::SongPartitioner(float inputSampleRate) :
|
max@1
|
369 Vamp::Plugin(inputSampleRate),
|
max@1
|
370 m_d(0),
|
Chris@35
|
371 m_chromadata(0),
|
max@1
|
372 m_bpb(4),
|
max@1
|
373 m_pluginFrameCount(0)
|
max@1
|
374 {
|
max@1
|
375 }
|
max@1
|
376
|
max@1
|
377
|
max@1
|
378 /* --- Desctructor --- */
|
max@1
|
379 SongPartitioner::~SongPartitioner()
|
max@1
|
380 {
|
max@1
|
381 delete m_d;
|
Chris@35
|
382 delete m_chromadata;
|
max@1
|
383 }
|
max@1
|
384
|
max@1
|
385
|
max@1
|
386 /* --- Methods --- */
|
max@1
|
387 string SongPartitioner::getIdentifier() const
|
max@1
|
388 {
|
max@1
|
389 return "qm-songpartitioner";
|
max@1
|
390 }
|
max@1
|
391
|
max@1
|
392 string SongPartitioner::getName() const
|
max@1
|
393 {
|
max@1
|
394 return "Song Partitioner";
|
max@1
|
395 }
|
max@1
|
396
|
max@1
|
397 string SongPartitioner::getDescription() const
|
max@1
|
398 {
|
max@1
|
399 return "Estimate contiguous segments pertaining to song parts such as verse and chorus.";
|
max@1
|
400 }
|
max@1
|
401
|
max@1
|
402 string SongPartitioner::getMaker() const
|
max@1
|
403 {
|
max@1
|
404 return "Queen Mary, University of London";
|
max@1
|
405 }
|
max@1
|
406
|
max@1
|
407 int SongPartitioner::getPluginVersion() const
|
max@1
|
408 {
|
max@1
|
409 return 2;
|
max@1
|
410 }
|
max@1
|
411
|
max@1
|
412 string SongPartitioner::getCopyright() const
|
max@1
|
413 {
|
max@1
|
414 return "Plugin by Matthew Davies, Christian Landone, Chris Cannam, Matthias Mauch and Massimiliano Zanoni Copyright (c) 2006-2012 QMUL - All Rights Reserved";
|
max@1
|
415 }
|
max@1
|
416
|
max@1
|
417 SongPartitioner::ParameterList SongPartitioner::getParameterDescriptors() const
|
max@1
|
418 {
|
max@1
|
419 ParameterList list;
|
max@1
|
420
|
max@1
|
421 ParameterDescriptor desc;
|
max@1
|
422
|
max@1
|
423 desc.identifier = "bpb";
|
max@1
|
424 desc.name = "Beats per Bar";
|
max@1
|
425 desc.description = "The number of beats in each bar";
|
max@1
|
426 desc.minValue = 2;
|
max@1
|
427 desc.maxValue = 16;
|
max@1
|
428 desc.defaultValue = 4;
|
max@1
|
429 desc.isQuantized = true;
|
max@1
|
430 desc.quantizeStep = 1;
|
max@1
|
431 list.push_back(desc);
|
max@1
|
432
|
max@1
|
433 return list;
|
max@1
|
434 }
|
max@1
|
435
|
max@1
|
436 float SongPartitioner::getParameter(std::string name) const
|
max@1
|
437 {
|
max@1
|
438 if (name == "bpb") return m_bpb;
|
max@1
|
439 return 0.0;
|
max@1
|
440 }
|
max@1
|
441
|
max@1
|
442 void SongPartitioner::setParameter(std::string name, float value)
|
max@1
|
443 {
|
max@1
|
444 if (name == "bpb") m_bpb = lrintf(value);
|
max@1
|
445 }
|
max@1
|
446
|
max@1
|
447
|
max@1
|
448 // Return the StepSize for Chroma Extractor
|
max@1
|
449 size_t SongPartitioner::getPreferredStepSize() const
|
max@1
|
450 {
|
max@1
|
451 size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
|
max@1
|
452 if (step < 1) step = 1;
|
max@1
|
453
|
max@1
|
454 return step;
|
max@1
|
455 }
|
max@1
|
456
|
max@1
|
457 // Return the BlockSize for Chroma Extractor
|
max@1
|
458 size_t SongPartitioner::getPreferredBlockSize() const
|
max@1
|
459 {
|
max@1
|
460 size_t theoretical = getPreferredStepSize() * 2;
|
max@1
|
461 theoretical *= m_chromaFramesizeFactor;
|
max@1
|
462
|
max@1
|
463 return theoretical;
|
max@1
|
464 }
|
max@1
|
465
|
max@1
|
466
|
max@1
|
467 // Initialize the plugin and define Beat Tracker and Chroma Extractor Objects
|
max@1
|
468 bool SongPartitioner::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
max@1
|
469 {
|
max@1
|
470 if (m_d) {
|
Chris@22
|
471 delete m_d;
|
Chris@22
|
472 m_d = 0;
|
max@1
|
473 }
|
Chris@35
|
474 if (m_chromadata) {
|
Chris@35
|
475 delete m_chromadata;
|
Chris@35
|
476 m_chromadata = 0;
|
Chris@35
|
477 }
|
max@1
|
478
|
max@1
|
479 if (channels < getMinChannelCount() ||
|
Chris@22
|
480 channels > getMaxChannelCount()) {
|
max@1
|
481 std::cerr << "SongPartitioner::initialise: Unsupported channel count: "
|
max@1
|
482 << channels << std::endl;
|
max@1
|
483 return false;
|
max@1
|
484 }
|
max@1
|
485
|
max@1
|
486 if (stepSize != getPreferredStepSize()) {
|
max@1
|
487 std::cerr << "ERROR: SongPartitioner::initialise: Unsupported step size for this sample rate: "
|
max@1
|
488 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
|
max@1
|
489 return false;
|
max@1
|
490 }
|
max@1
|
491
|
max@1
|
492 if (blockSize != getPreferredBlockSize()) {
|
max@1
|
493 std::cerr << "WARNING: SongPartitioner::initialise: Sub-optimal block size for this sample rate: "
|
max@1
|
494 << blockSize << " (wanted " << getPreferredBlockSize() << ")" << std::endl;
|
max@1
|
495 }
|
max@1
|
496
|
max@1
|
497 // Beat tracker and Chroma extractor has two different configuration parameters
|
max@1
|
498
|
max@1
|
499 // Configuration Parameters for Beat Tracker
|
max@1
|
500 DFConfig dfConfig;
|
max@1
|
501 dfConfig.DFType = DF_COMPLEXSD;
|
max@1
|
502 dfConfig.stepSize = stepSize;
|
max@1
|
503 dfConfig.frameLength = blockSize / m_chromaFramesizeFactor;
|
max@1
|
504 dfConfig.dbRise = 3;
|
max@1
|
505 dfConfig.adaptiveWhitening = false;
|
max@1
|
506 dfConfig.whiteningRelaxCoeff = -1;
|
max@1
|
507 dfConfig.whiteningFloor = -1;
|
max@1
|
508
|
max@1
|
509 // Initialise Beat Tracker
|
max@1
|
510 m_d = new BeatTrackerData(m_inputSampleRate, dfConfig);
|
max@1
|
511 m_d->downBeat->setBeatsPerBar(m_bpb);
|
max@1
|
512
|
max@1
|
513 // Initialise Chroma Extractor
|
max@1
|
514 m_chromadata = new ChromaData(m_inputSampleRate, blockSize);
|
max@1
|
515 m_chromadata->initialise();
|
max@1
|
516
|
max@1
|
517 return true;
|
max@1
|
518 }
|
max@1
|
519
|
max@1
|
520 void SongPartitioner::reset()
|
max@1
|
521 {
|
max@1
|
522 if (m_d) m_d->reset();
|
max@1
|
523 m_pluginFrameCount = 0;
|
max@1
|
524 }
|
max@1
|
525
|
max@1
|
526 SongPartitioner::OutputList SongPartitioner::getOutputDescriptors() const
|
max@1
|
527 {
|
max@1
|
528 OutputList list;
|
max@1
|
529 size_t outputCounter = 0;
|
max@1
|
530
|
max@1
|
531 OutputDescriptor beat;
|
max@1
|
532 beat.identifier = "beats";
|
max@1
|
533 beat.name = "Beats";
|
max@1
|
534 beat.description = "Beat locations labelled with metrical position";
|
max@1
|
535 beat.unit = "";
|
max@1
|
536 beat.hasFixedBinCount = true;
|
max@1
|
537 beat.binCount = 0;
|
max@1
|
538 beat.sampleType = OutputDescriptor::VariableSampleRate;
|
max@1
|
539 beat.sampleRate = 1.0 / m_stepSecs;
|
max@1
|
540 m_beatOutputNumber = outputCounter++;
|
max@1
|
541
|
max@1
|
542 OutputDescriptor bars;
|
max@1
|
543 bars.identifier = "bars";
|
max@1
|
544 bars.name = "Bars";
|
max@1
|
545 bars.description = "Bar locations";
|
max@1
|
546 bars.unit = "";
|
max@1
|
547 bars.hasFixedBinCount = true;
|
max@1
|
548 bars.binCount = 0;
|
max@1
|
549 bars.sampleType = OutputDescriptor::VariableSampleRate;
|
max@1
|
550 bars.sampleRate = 1.0 / m_stepSecs;
|
max@1
|
551 m_barsOutputNumber = outputCounter++;
|
max@1
|
552
|
max@1
|
553 OutputDescriptor beatcounts;
|
max@1
|
554 beatcounts.identifier = "beatcounts";
|
max@1
|
555 beatcounts.name = "Beat Count";
|
max@1
|
556 beatcounts.description = "Beat counter function";
|
max@1
|
557 beatcounts.unit = "";
|
max@1
|
558 beatcounts.hasFixedBinCount = true;
|
max@1
|
559 beatcounts.binCount = 1;
|
max@1
|
560 beatcounts.sampleType = OutputDescriptor::VariableSampleRate;
|
max@1
|
561 beatcounts.sampleRate = 1.0 / m_stepSecs;
|
max@1
|
562 m_beatcountsOutputNumber = outputCounter++;
|
max@1
|
563
|
max@1
|
564 OutputDescriptor beatsd;
|
max@1
|
565 beatsd.identifier = "beatsd";
|
max@1
|
566 beatsd.name = "Beat Spectral Difference";
|
max@1
|
567 beatsd.description = "Beat spectral difference function used for bar-line detection";
|
max@1
|
568 beatsd.unit = "";
|
max@1
|
569 beatsd.hasFixedBinCount = true;
|
max@1
|
570 beatsd.binCount = 1;
|
max@1
|
571 beatsd.sampleType = OutputDescriptor::VariableSampleRate;
|
max@1
|
572 beatsd.sampleRate = 1.0 / m_stepSecs;
|
max@1
|
573 m_beatsdOutputNumber = outputCounter++;
|
max@1
|
574
|
max@1
|
575 OutputDescriptor logscalespec;
|
max@1
|
576 logscalespec.identifier = "logscalespec";
|
max@1
|
577 logscalespec.name = "Log-Frequency Spectrum";
|
max@1
|
578 logscalespec.description = "Spectrum with linear frequency on a log scale.";
|
max@1
|
579 logscalespec.unit = "";
|
max@1
|
580 logscalespec.hasFixedBinCount = true;
|
max@1
|
581 logscalespec.binCount = nNote;
|
max@1
|
582 logscalespec.hasKnownExtents = false;
|
max@1
|
583 logscalespec.isQuantized = false;
|
max@1
|
584 logscalespec.sampleType = OutputDescriptor::FixedSampleRate;
|
max@1
|
585 logscalespec.hasDuration = false;
|
max@1
|
586 logscalespec.sampleRate = m_inputSampleRate/2048;
|
max@1
|
587 m_logscalespecOutputNumber = outputCounter++;
|
max@1
|
588
|
max@1
|
589 OutputDescriptor bothchroma;
|
max@1
|
590 bothchroma.identifier = "bothchroma";
|
max@1
|
591 bothchroma.name = "Chromagram and Bass Chromagram";
|
max@1
|
592 bothchroma.description = "Tuning-adjusted chromagram and bass chromagram (stacked on top of each other) from NNLS approximate transcription.";
|
max@1
|
593 bothchroma.unit = "";
|
max@1
|
594 bothchroma.hasFixedBinCount = true;
|
max@1
|
595 bothchroma.binCount = 24;
|
max@1
|
596 bothchroma.hasKnownExtents = false;
|
max@1
|
597 bothchroma.isQuantized = false;
|
max@1
|
598 bothchroma.sampleType = OutputDescriptor::FixedSampleRate;
|
max@1
|
599 bothchroma.hasDuration = false;
|
max@1
|
600 bothchroma.sampleRate = m_inputSampleRate/2048;
|
max@1
|
601 m_bothchromaOutputNumber = outputCounter++;
|
max@1
|
602
|
max@1
|
603 OutputDescriptor qchromafw;
|
max@1
|
604 qchromafw.identifier = "qchromafw";
|
max@1
|
605 qchromafw.name = "Pseudo-Quantised Chromagram and Bass Chromagram";
|
max@1
|
606 qchromafw.description = "Pseudo-Quantised Chromagram and Bass Chromagram (frames between two beats are identical).";
|
max@1
|
607 qchromafw.unit = "";
|
max@1
|
608 qchromafw.hasFixedBinCount = true;
|
max@1
|
609 qchromafw.binCount = 24;
|
max@1
|
610 qchromafw.hasKnownExtents = false;
|
max@1
|
611 qchromafw.isQuantized = false;
|
max@1
|
612 qchromafw.sampleType = OutputDescriptor::FixedSampleRate;
|
max@1
|
613 qchromafw.hasDuration = false;
|
max@1
|
614 qchromafw.sampleRate = m_inputSampleRate/2048;
|
max@1
|
615 m_qchromafwOutputNumber = outputCounter++;
|
max@1
|
616
|
max@1
|
617 OutputDescriptor qchroma;
|
max@1
|
618 qchroma.identifier = "qchroma";
|
max@1
|
619 qchroma.name = "Quantised Chromagram and Bass Chromagram";
|
max@1
|
620 qchroma.description = "Quantised Chromagram and Bass Chromagram.";
|
max@1
|
621 qchroma.unit = "";
|
max@1
|
622 qchroma.hasFixedBinCount = true;
|
max@1
|
623 qchroma.binCount = 24;
|
max@1
|
624 qchroma.hasKnownExtents = false;
|
max@1
|
625 qchroma.isQuantized = false;
|
max@1
|
626 qchroma.sampleType = OutputDescriptor::FixedSampleRate;
|
max@1
|
627 qchroma.hasDuration = true;
|
Chris@17
|
628 qchroma.sampleRate = m_inputSampleRate/2048;
|
max@1
|
629 m_qchromaOutputNumber = outputCounter++;
|
max@1
|
630
|
max@1
|
631 OutputDescriptor segm;
|
Chris@15
|
632 segm.identifier = "segmentation";
|
max@1
|
633 segm.name = "Segmentation";
|
max@1
|
634 segm.description = "Segmentation";
|
max@1
|
635 segm.unit = "segment-type";
|
max@1
|
636 segm.hasFixedBinCount = true;
|
max@1
|
637 //segm.binCount = 24;
|
max@1
|
638 segm.binCount = 1;
|
max@1
|
639 segm.hasKnownExtents = true;
|
max@1
|
640 segm.minValue = 1;
|
max@1
|
641 segm.maxValue = 5;
|
max@1
|
642 segm.isQuantized = true;
|
max@1
|
643 segm.quantizeStep = 1;
|
max@1
|
644 segm.sampleType = OutputDescriptor::VariableSampleRate;
|
Chris@17
|
645 segm.sampleRate = 1.0 / m_stepSecs;
|
max@1
|
646 segm.hasDuration = true;
|
max@1
|
647 m_segmOutputNumber = outputCounter++;
|
max@1
|
648
|
max@1
|
649
|
max@1
|
650 /*
|
max@1
|
651 OutputList list;
|
max@1
|
652 OutputDescriptor segmentation;
|
max@1
|
653 segmentation.identifier = "segmentation";
|
max@1
|
654 segmentation.name = "Segmentation";
|
max@1
|
655 segmentation.description = "Segmentation";
|
max@1
|
656 segmentation.unit = "segment-type";
|
max@1
|
657 segmentation.hasFixedBinCount = true;
|
max@1
|
658 segmentation.binCount = 1;
|
max@1
|
659 segmentation.hasKnownExtents = true;
|
max@1
|
660 segmentation.minValue = 1;
|
max@1
|
661 segmentation.maxValue = nSegmentTypes;
|
max@1
|
662 segmentation.isQuantized = true;
|
max@1
|
663 segmentation.quantizeStep = 1;
|
max@1
|
664 segmentation.sampleType = OutputDescriptor::VariableSampleRate;
|
max@1
|
665 segmentation.sampleRate = m_inputSampleRate / getPreferredStepSize();
|
max@1
|
666 list.push_back(segmentation);
|
max@1
|
667 return list;
|
max@1
|
668 */
|
max@1
|
669
|
max@1
|
670
|
max@1
|
671 list.push_back(beat);
|
max@1
|
672 list.push_back(bars);
|
max@1
|
673 list.push_back(beatcounts);
|
max@1
|
674 list.push_back(beatsd);
|
max@1
|
675 list.push_back(logscalespec);
|
max@1
|
676 list.push_back(bothchroma);
|
max@1
|
677 list.push_back(qchromafw);
|
max@1
|
678 list.push_back(qchroma);
|
max@1
|
679 list.push_back(segm);
|
max@1
|
680
|
max@1
|
681 return list;
|
max@1
|
682 }
|
max@1
|
683
|
max@1
|
684 // Executed for each frame - called from the host
|
max@1
|
685
|
max@1
|
686 // We use time domain input, because DownBeat requires it -- so we
|
max@1
|
687 // use the time-domain version of DetectionFunction::process which
|
max@1
|
688 // does its own FFT. It requires doubles as input, so we need to
|
max@1
|
689 // make a temporary copy
|
max@1
|
690
|
max@1
|
691 // We only support a single input channel
|
max@1
|
692 SongPartitioner::FeatureSet SongPartitioner::process(const float *const *inputBuffers,Vamp::RealTime timestamp)
|
max@1
|
693 {
|
max@1
|
694 if (!m_d) {
|
Chris@22
|
695 cerr << "ERROR: SongPartitioner::process: "
|
Chris@22
|
696 << "SongPartitioner has not been initialised"
|
Chris@22
|
697 << endl;
|
Chris@22
|
698 return FeatureSet();
|
max@1
|
699 }
|
max@1
|
700
|
max@1
|
701 const int fl = m_d->dfConfig.frameLength;
|
max@1
|
702 #ifndef __GNUC__
|
max@1
|
703 double *dfinput = (double *)alloca(fl * sizeof(double));
|
max@1
|
704 #else
|
max@1
|
705 double dfinput[fl];
|
max@1
|
706 #endif
|
max@1
|
707 int sampleOffset = ((m_chromaFramesizeFactor-1) * fl) / 2;
|
max@1
|
708
|
max@1
|
709 // Since chroma needs a much longer frame size, we only ever use the very
|
max@1
|
710 // beginning of the frame for beat tracking.
|
max@1
|
711 for (int i = 0; i < fl; ++i) dfinput[i] = inputBuffers[0][i];
|
max@1
|
712 double output = m_d->df->process(dfinput);
|
max@1
|
713
|
max@1
|
714 if (m_d->dfOutput.empty()) m_d->origin = timestamp;
|
max@1
|
715
|
max@1
|
716 // std::cerr << "df[" << m_d->dfOutput.size() << "] is " << output << std::endl;
|
max@1
|
717 m_d->dfOutput.push_back(output);
|
max@1
|
718
|
max@1
|
719 // Downsample and store the incoming audio block.
|
max@1
|
720 // We have an overlap on the incoming audio stream (step size is
|
max@1
|
721 // half block size) -- this function is configured to take only a
|
max@1
|
722 // step size's worth, so effectively ignoring the overlap. Note
|
max@1
|
723 // however that this means we omit the last blocksize - stepsize
|
max@1
|
724 // samples completely for the purposes of barline detection
|
max@1
|
725 // (hopefully not a problem)
|
max@1
|
726 m_d->downBeat->pushAudioBlock(inputBuffers[0]);
|
max@1
|
727
|
max@1
|
728 // The following is not done every time, but only every m_chromaFramesizeFactor times,
|
max@1
|
729 // because the chroma does not need dense time frames.
|
max@1
|
730
|
max@1
|
731 if (m_pluginFrameCount % m_chromaStepsizeFactor == 0)
|
max@1
|
732 {
|
max@1
|
733
|
max@1
|
734 // Window the full time domain, data, FFT it and process chroma stuff.
|
max@1
|
735
|
max@1
|
736 #ifndef __GNUC__
|
max@1
|
737 float *windowedBuffers = (float *)alloca(m_chromadata->blockSize * sizeof(float));
|
max@1
|
738 #else
|
max@1
|
739 float windowedBuffers[m_chromadata->blockSize];
|
max@1
|
740 #endif
|
max@1
|
741 m_chromadata->window.cut(&inputBuffers[0][0], &windowedBuffers[0]);
|
max@1
|
742
|
max@1
|
743 // adjust timestamp (we want the middle of the frame)
|
max@1
|
744 timestamp = timestamp + Vamp::RealTime::frame2RealTime(sampleOffset, lrintf(m_inputSampleRate));
|
max@1
|
745
|
max@1
|
746 m_chromadata->baseProcess(&windowedBuffers[0], timestamp);
|
max@1
|
747
|
max@1
|
748 }
|
max@1
|
749 m_pluginFrameCount++;
|
max@1
|
750
|
max@1
|
751 FeatureSet fs;
|
max@1
|
752 fs[m_logscalespecOutputNumber].push_back(
|
max@1
|
753 m_chromadata->logSpectrum.back());
|
max@1
|
754 return fs;
|
max@1
|
755 }
|
max@1
|
756
|
max@1
|
757 SongPartitioner::FeatureSet SongPartitioner::getRemainingFeatures()
|
max@1
|
758 {
|
max@1
|
759 if (!m_d) {
|
Chris@22
|
760 cerr << "ERROR: SongPartitioner::getRemainingFeatures: "
|
Chris@22
|
761 << "SongPartitioner has not been initialised"
|
Chris@22
|
762 << endl;
|
Chris@22
|
763 return FeatureSet();
|
max@1
|
764 }
|
max@1
|
765
|
Chris@16
|
766 FeatureSet masterFeatureset = beatTrack();
|
Chris@16
|
767 FeatureList chromaList = chromaFeatures();
|
max@1
|
768
|
max@1
|
769 for (size_t i = 0; i < chromaList.size(); ++i)
|
max@1
|
770 {
|
max@1
|
771 masterFeatureset[m_bothchromaOutputNumber].push_back(chromaList[i]);
|
max@1
|
772 }
|
max@1
|
773
|
max@1
|
774 // quantised and pseudo-quantised (beat-wise) chroma
|
Chris@16
|
775 std::vector<FeatureList> quantisedChroma = beatQuantiser(chromaList, masterFeatureset[m_beatOutputNumber]);
|
Chris@32
|
776
|
Chris@32
|
777 if (quantisedChroma.empty()) return masterFeatureset;
|
max@1
|
778
|
max@1
|
779 masterFeatureset[m_qchromafwOutputNumber] = quantisedChroma[0];
|
max@1
|
780 masterFeatureset[m_qchromaOutputNumber] = quantisedChroma[1];
|
max@1
|
781
|
max@1
|
782 // Segmentation
|
Chris@14
|
783 masterFeatureset[m_segmOutputNumber] = runSegmenter(quantisedChroma[1]);
|
max@1
|
784
|
max@1
|
785 return(masterFeatureset);
|
max@1
|
786 }
|
max@1
|
787
|
max@1
|
788 /* ------ Beat Tracker ------ */
|
max@1
|
789
|
Chris@16
|
790 SongPartitioner::FeatureSet SongPartitioner::beatTrack()
|
max@1
|
791 {
|
max@1
|
792 vector<double> df;
|
max@1
|
793 vector<double> beatPeriod;
|
max@1
|
794 vector<double> tempi;
|
max@1
|
795
|
max@1
|
796 for (size_t i = 2; i < m_d->dfOutput.size(); ++i) { // discard first two elts
|
max@1
|
797 df.push_back(m_d->dfOutput[i]);
|
max@1
|
798 beatPeriod.push_back(0.0);
|
max@1
|
799 }
|
max@1
|
800 if (df.empty()) return FeatureSet();
|
max@1
|
801
|
max@1
|
802 TempoTrackV2 tt(m_inputSampleRate, m_d->dfConfig.stepSize);
|
max@1
|
803 tt.calculateBeatPeriod(df, beatPeriod, tempi);
|
max@1
|
804
|
max@1
|
805 vector<double> beats;
|
max@1
|
806 tt.calculateBeats(df, beatPeriod, beats);
|
max@1
|
807
|
max@1
|
808 vector<int> downbeats;
|
max@1
|
809 size_t downLength = 0;
|
max@1
|
810 const float *downsampled = m_d->downBeat->getBufferedAudio(downLength);
|
max@1
|
811 m_d->downBeat->findDownBeats(downsampled, downLength, beats, downbeats);
|
max@1
|
812
|
max@1
|
813 vector<double> beatsd;
|
max@1
|
814 m_d->downBeat->getBeatSD(beatsd);
|
max@1
|
815
|
max@1
|
816 /*std::cout << "BeatTracker: found downbeats at: ";
|
max@1
|
817 for (int i = 0; i < downbeats.size(); ++i) std::cout << downbeats[i] << " " << std::endl;*/
|
max@1
|
818
|
max@1
|
819 FeatureSet returnFeatures;
|
max@1
|
820
|
max@1
|
821 char label[20];
|
max@1
|
822
|
max@1
|
823 int dbi = 0;
|
max@1
|
824 int beat = 0;
|
max@1
|
825 int bar = 0;
|
max@1
|
826
|
max@1
|
827 if (!downbeats.empty()) {
|
max@1
|
828 // get the right number for the first beat; this will be
|
max@1
|
829 // incremented before use (at top of the following loop)
|
max@1
|
830 int firstDown = downbeats[0];
|
max@1
|
831 beat = m_bpb - firstDown - 1;
|
max@1
|
832 if (beat == m_bpb) beat = 0;
|
max@1
|
833 }
|
max@1
|
834
|
max@1
|
835 for (size_t i = 0; i < beats.size(); ++i) {
|
max@1
|
836
|
max@1
|
837 size_t frame = beats[i] * m_d->dfConfig.stepSize;
|
max@1
|
838
|
max@1
|
839 if (dbi < downbeats.size() && i == downbeats[dbi]) {
|
max@1
|
840 beat = 0;
|
max@1
|
841 ++bar;
|
max@1
|
842 ++dbi;
|
max@1
|
843 } else {
|
max@1
|
844 ++beat;
|
max@1
|
845 }
|
max@1
|
846
|
max@1
|
847 /* Ooutput Section */
|
max@1
|
848
|
max@1
|
849 // outputs are:
|
max@1
|
850 //
|
max@1
|
851 // 0 -> beats
|
max@1
|
852 // 1 -> bars
|
max@1
|
853 // 2 -> beat counter function
|
max@1
|
854
|
max@1
|
855 Feature feature;
|
max@1
|
856 feature.hasTimestamp = true;
|
max@1
|
857 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime (frame, lrintf(m_inputSampleRate));
|
max@1
|
858
|
max@1
|
859 sprintf(label, "%d", beat + 1);
|
max@1
|
860 feature.label = label;
|
max@1
|
861 returnFeatures[m_beatOutputNumber].push_back(feature); // labelled beats
|
max@1
|
862
|
max@1
|
863 feature.values.push_back(beat + 1);
|
max@1
|
864 returnFeatures[m_beatcountsOutputNumber].push_back(feature); // beat function
|
max@1
|
865
|
max@1
|
866 if (i > 0 && i <= beatsd.size()) {
|
max@1
|
867 feature.values.clear();
|
max@1
|
868 feature.values.push_back(beatsd[i-1]);
|
max@1
|
869 feature.label = "";
|
max@1
|
870 returnFeatures[m_beatsdOutputNumber].push_back(feature); // beat spectral difference
|
max@1
|
871 }
|
max@1
|
872
|
max@1
|
873 if (beat == 0) {
|
max@1
|
874 feature.values.clear();
|
max@1
|
875 sprintf(label, "%d", bar);
|
max@1
|
876 feature.label = label;
|
max@1
|
877 returnFeatures[m_barsOutputNumber].push_back(feature); // bars
|
max@1
|
878 }
|
max@1
|
879 }
|
max@1
|
880
|
max@1
|
881 return returnFeatures;
|
max@1
|
882 }
|
max@1
|
883
|
max@1
|
884
|
max@1
|
885 /* ------ Chroma Extractor ------ */
|
max@1
|
886
|
Chris@16
|
887 SongPartitioner::FeatureList SongPartitioner::chromaFeatures()
|
max@1
|
888 {
|
max@1
|
889
|
max@1
|
890 FeatureList returnFeatureList;
|
max@1
|
891 FeatureList tunedlogfreqspec;
|
max@1
|
892
|
max@1
|
893 if (m_chromadata->logSpectrum.size() == 0) return returnFeatureList;
|
max@1
|
894
|
max@1
|
895 /** Calculate Tuning
|
max@1
|
896 calculate tuning from (using the angle of the complex number defined by the
|
max@1
|
897 cumulative mean real and imag values)
|
max@1
|
898 **/
|
max@1
|
899 float meanTuningImag = 0;
|
max@1
|
900 float meanTuningReal = 0;
|
max@1
|
901 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
|
max@1
|
902 meanTuningReal += m_chromadata->meanTunings[iBPS] * m_chromadata->cosvalues[iBPS];
|
max@1
|
903 meanTuningImag += m_chromadata->meanTunings[iBPS] * m_chromadata->sinvalues[iBPS];
|
max@1
|
904 }
|
max@1
|
905 float cumulativetuning = 440 * pow(2,atan2(meanTuningImag, meanTuningReal)/(24*M_PI));
|
max@1
|
906 float normalisedtuning = atan2(meanTuningImag, meanTuningReal)/(2*M_PI);
|
max@1
|
907 int intShift = floor(normalisedtuning * 3);
|
max@1
|
908 float floatShift = normalisedtuning * 3 - intShift; // floatShift is a really bad name for this
|
max@1
|
909
|
max@1
|
910 char buffer0 [50];
|
max@1
|
911
|
max@1
|
912 sprintf(buffer0, "estimated tuning: %0.1f Hz", cumulativetuning);
|
max@1
|
913
|
max@1
|
914 /** Tune Log-Frequency Spectrogram
|
max@1
|
915 calculate a tuned log-frequency spectrogram (f2): use the tuning estimated above (kinda f0) to
|
max@1
|
916 perform linear interpolation on the existing log-frequency spectrogram (kinda f1).
|
max@1
|
917 **/
|
max@1
|
918 cerr << endl << "[NNLS Chroma Plugin] Tuning Log-Frequency Spectrogram ... ";
|
max@1
|
919
|
max@1
|
920 float tempValue = 0;
|
max@1
|
921
|
max@1
|
922 int count = 0;
|
max@1
|
923
|
max@1
|
924 for (FeatureList::iterator i = m_chromadata->logSpectrum.begin(); i != m_chromadata->logSpectrum.end(); ++i)
|
max@1
|
925 {
|
max@1
|
926
|
max@1
|
927 Feature f1 = *i;
|
max@1
|
928 Feature f2; // tuned log-frequency spectrum
|
max@1
|
929
|
max@1
|
930 f2.hasTimestamp = true;
|
max@1
|
931 f2.timestamp = f1.timestamp;
|
max@1
|
932
|
max@1
|
933 f2.values.push_back(0.0);
|
max@1
|
934 f2.values.push_back(0.0); // set lower edge to zero
|
max@1
|
935
|
max@1
|
936 if (m_chromadata->tuneLocal) {
|
max@1
|
937 intShift = floor(m_chromadata->localTuning[count] * 3);
|
max@1
|
938 floatShift = m_chromadata->localTuning[count] * 3 - intShift;
|
max@1
|
939 // floatShift is a really bad name for this
|
max@1
|
940 }
|
max@1
|
941
|
max@1
|
942 for (int k = 2; k < (int)f1.values.size() - 3; ++k)
|
max@1
|
943 { // interpolate all inner bins
|
max@1
|
944 tempValue = f1.values[k + intShift] * (1-floatShift) + f1.values[k+intShift+1] * floatShift;
|
max@1
|
945 f2.values.push_back(tempValue);
|
max@1
|
946 }
|
max@1
|
947
|
max@1
|
948 f2.values.push_back(0.0);
|
max@1
|
949 f2.values.push_back(0.0);
|
max@1
|
950 f2.values.push_back(0.0); // upper edge
|
max@1
|
951
|
max@1
|
952 vector<float> runningmean = SpecialConvolution(f2.values,m_chromadata->hw);
|
max@1
|
953 vector<float> runningstd;
|
max@1
|
954 for (int i = 0; i < nNote; i++) { // first step: squared values into vector (variance)
|
max@1
|
955 runningstd.push_back((f2.values[i] - runningmean[i]) * (f2.values[i] - runningmean[i]));
|
max@1
|
956 }
|
max@1
|
957 runningstd = SpecialConvolution(runningstd,m_chromadata->hw); // second step convolve
|
max@1
|
958 for (int i = 0; i < nNote; i++)
|
max@1
|
959 {
|
max@1
|
960
|
max@1
|
961 runningstd[i] = sqrt(runningstd[i]);
|
max@1
|
962 // square root to finally have running std
|
max@1
|
963
|
max@1
|
964 if (runningstd[i] > 0)
|
max@1
|
965 {
|
max@1
|
966 f2.values[i] = (f2.values[i] - runningmean[i]) > 0 ?
|
max@1
|
967 (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_chromadata->whitening) : 0;
|
max@1
|
968 }
|
max@1
|
969
|
max@1
|
970 if (f2.values[i] < 0) {
|
max@1
|
971
|
max@1
|
972 cerr << "ERROR: negative value in logfreq spectrum" << endl;
|
max@1
|
973
|
max@1
|
974 }
|
max@1
|
975 }
|
max@1
|
976 tunedlogfreqspec.push_back(f2);
|
max@1
|
977 count++;
|
max@1
|
978 }
|
max@1
|
979 cerr << "done." << endl;
|
max@1
|
980 /** Semitone spectrum and chromagrams
|
max@1
|
981 Semitone-spaced log-frequency spectrum derived
|
max@1
|
982 from the tuned log-freq spectrum above. the spectrum
|
max@1
|
983 is inferred using a non-negative least squares algorithm.
|
max@1
|
984 Three different kinds of chromagram are calculated, "treble", "bass", and "both" (which means
|
max@1
|
985 bass and treble stacked onto each other).
|
max@1
|
986 **/
|
max@1
|
987 if (m_chromadata->useNNLS == 0) {
|
max@1
|
988 cerr << "[NNLS Chroma Plugin] Mapping to semitone spectrum and chroma ... ";
|
max@1
|
989 } else {
|
max@1
|
990 cerr << "[NNLS Chroma Plugin] Performing NNLS and mapping to chroma ... ";
|
max@1
|
991 }
|
max@1
|
992
|
max@1
|
993 vector<float> oldchroma = vector<float>(12,0);
|
max@1
|
994 vector<float> oldbasschroma = vector<float>(12,0);
|
max@1
|
995 count = 0;
|
max@1
|
996
|
max@1
|
997 for (FeatureList::iterator it = tunedlogfreqspec.begin(); it != tunedlogfreqspec.end(); ++it) {
|
max@1
|
998 Feature logfreqsp = *it; // logfreq spectrum
|
max@1
|
999 Feature bothchroma; // treble and bass chromagram
|
max@1
|
1000
|
max@1
|
1001 bothchroma.hasTimestamp = true;
|
max@1
|
1002 bothchroma.timestamp = logfreqsp.timestamp;
|
max@1
|
1003
|
max@1
|
1004 float b[nNote];
|
max@1
|
1005
|
max@1
|
1006 bool some_b_greater_zero = false;
|
max@1
|
1007 float sumb = 0;
|
max@1
|
1008 for (int i = 0; i < nNote; i++) {
|
max@1
|
1009 b[i] = logfreqsp.values[i];
|
max@1
|
1010 sumb += b[i];
|
max@1
|
1011 if (b[i] > 0) {
|
max@1
|
1012 some_b_greater_zero = true;
|
max@1
|
1013 }
|
max@1
|
1014 }
|
max@1
|
1015
|
max@1
|
1016 // here's where the non-negative least squares algorithm calculates the note activation x
|
max@1
|
1017
|
max@1
|
1018 vector<float> chroma = vector<float>(12, 0);
|
max@1
|
1019 vector<float> basschroma = vector<float>(12, 0);
|
max@1
|
1020 float currval;
|
max@1
|
1021 int iSemitone = 0;
|
max@1
|
1022
|
max@1
|
1023 if (some_b_greater_zero) {
|
max@1
|
1024 if (m_chromadata->useNNLS == 0) {
|
max@1
|
1025 for (int iNote = nBPS/2 + 2; iNote < nNote - nBPS/2; iNote += nBPS) {
|
max@1
|
1026 currval = 0;
|
max@1
|
1027 for (int iBPS = -nBPS/2; iBPS < nBPS/2+1; ++iBPS) {
|
max@1
|
1028 currval += b[iNote + iBPS] * (1-abs(iBPS*1.0/(nBPS/2+1)));
|
max@1
|
1029 }
|
max@1
|
1030 chroma[iSemitone % 12] += currval * treblewindow[iSemitone];
|
max@1
|
1031 basschroma[iSemitone % 12] += currval * basswindow[iSemitone];
|
max@1
|
1032 iSemitone++;
|
max@1
|
1033 }
|
max@1
|
1034
|
max@1
|
1035 } else {
|
max@1
|
1036 float x[84+1000];
|
max@1
|
1037 for (int i = 1; i < 1084; ++i) x[i] = 1.0;
|
max@1
|
1038 vector<int> signifIndex;
|
max@1
|
1039 int index=0;
|
max@1
|
1040 sumb /= 84.0;
|
max@1
|
1041 for (int iNote = nBPS/2 + 2; iNote < nNote - nBPS/2; iNote += nBPS) {
|
max@1
|
1042 float currval = 0;
|
max@1
|
1043 for (int iBPS = -nBPS/2; iBPS < nBPS/2+1; ++iBPS) {
|
max@1
|
1044 currval += b[iNote + iBPS];
|
max@1
|
1045 }
|
max@1
|
1046 if (currval > 0) signifIndex.push_back(index);
|
max@1
|
1047 index++;
|
max@1
|
1048 }
|
max@1
|
1049 float rnorm;
|
max@1
|
1050 float w[84+1000];
|
max@1
|
1051 float zz[84+1000];
|
max@1
|
1052 int indx[84+1000];
|
max@1
|
1053 int mode;
|
max@1
|
1054 int dictsize = nNote*signifIndex.size();
|
max@1
|
1055
|
max@1
|
1056 float *curr_dict = new float[dictsize];
|
max@1
|
1057 for (int iNote = 0; iNote < (int)signifIndex.size(); ++iNote) {
|
max@1
|
1058 for (int iBin = 0; iBin < nNote; iBin++) {
|
max@1
|
1059 curr_dict[iNote * nNote + iBin] =
|
max@1
|
1060 1.0 * m_chromadata->dict[signifIndex[iNote] * nNote + iBin];
|
max@1
|
1061 }
|
max@1
|
1062 }
|
max@1
|
1063 nnls(curr_dict, nNote, nNote, signifIndex.size(), b, x, &rnorm, w, zz, indx, &mode);
|
max@1
|
1064 delete [] curr_dict;
|
max@1
|
1065 for (int iNote = 0; iNote < (int)signifIndex.size(); ++iNote) {
|
max@1
|
1066 // cerr << mode << endl;
|
max@1
|
1067 chroma[signifIndex[iNote] % 12] += x[iNote] * treblewindow[signifIndex[iNote]];
|
max@1
|
1068 basschroma[signifIndex[iNote] % 12] += x[iNote] * basswindow[signifIndex[iNote]];
|
max@1
|
1069 }
|
max@1
|
1070 }
|
max@1
|
1071 }
|
max@1
|
1072
|
max@1
|
1073 chroma.insert(chroma.begin(), basschroma.begin(), basschroma.end());
|
max@1
|
1074 // just stack the both chromas
|
max@1
|
1075
|
max@1
|
1076 bothchroma.values = chroma;
|
max@1
|
1077 returnFeatureList.push_back(bothchroma);
|
max@1
|
1078 count++;
|
max@1
|
1079 }
|
max@1
|
1080 cerr << "done." << endl;
|
max@1
|
1081
|
max@1
|
1082 return returnFeatureList;
|
max@1
|
1083 }
|
max@1
|
1084
|
max@1
|
1085 /* ------ Beat Quantizer ------ */
|
max@1
|
1086
|
max@4
|
1087 std::vector<Vamp::Plugin::FeatureList>
|
Chris@16
|
1088 SongPartitioner::beatQuantiser(Vamp::Plugin::FeatureList chromagram, Vamp::Plugin::FeatureList beats)
|
max@1
|
1089 {
|
max@1
|
1090 std::vector<FeatureList> returnVector;
|
max@1
|
1091
|
max@1
|
1092 FeatureList fwQchromagram; // frame-wise beat-quantised chroma
|
max@1
|
1093 FeatureList bwQchromagram; // beat-wise beat-quantised chroma
|
max@1
|
1094
|
max@4
|
1095 int nChromaFrame = (int) chromagram.size();
|
max@4
|
1096 int nBeat = (int) beats.size();
|
max@1
|
1097
|
max@1
|
1098 if (nBeat == 0 && nChromaFrame == 0) return returnVector;
|
max@1
|
1099
|
max@1
|
1100 size_t nBin = chromagram[0].values.size();
|
max@1
|
1101
|
max@1
|
1102 vector<float> tempChroma = vector<float>(nBin);
|
max@1
|
1103
|
max@1
|
1104 Vamp::RealTime beatTimestamp = Vamp::RealTime::zeroTime;
|
max@1
|
1105 int currBeatCount = -1; // start before first beat
|
max@1
|
1106 int framesInBeat = 0;
|
max@1
|
1107
|
max@4
|
1108 for (int iChroma = 0; iChroma < nChromaFrame; ++iChroma)
|
max@1
|
1109 {
|
max@4
|
1110 Vamp::RealTime frameTimestamp = chromagram[iChroma].timestamp;
|
Chris@24
|
1111 Vamp::RealTime newBeatTimestamp;
|
Chris@22
|
1112
|
Chris@24
|
1113 if (currBeatCount != beats.size()-1) newBeatTimestamp = beats[currBeatCount+1].timestamp;
|
Chris@24
|
1114 else newBeatTimestamp = chromagram[nChromaFrame-1].timestamp;
|
Chris@22
|
1115
|
Chris@24
|
1116 if (frameTimestamp > newBeatTimestamp ||
|
max@1
|
1117 iChroma == nChromaFrame-1)
|
max@1
|
1118 {
|
max@1
|
1119 // new beat (or last chroma frame)
|
max@1
|
1120 // 1. finish all the old beat processing
|
Chris@23
|
1121 if (framesInBeat > 0)
|
Chris@23
|
1122 {
|
Chris@23
|
1123 for (int i = 0; i < nBin; ++i) tempChroma[i] /= framesInBeat; // average
|
Chris@23
|
1124 }
|
max@1
|
1125
|
max@1
|
1126 Feature bwQchromaFrame;
|
max@1
|
1127 bwQchromaFrame.hasTimestamp = true;
|
max@1
|
1128 bwQchromaFrame.timestamp = beatTimestamp;
|
max@1
|
1129 bwQchromaFrame.values = tempChroma;
|
Chris@24
|
1130 bwQchromaFrame.duration = newBeatTimestamp - beatTimestamp;
|
max@1
|
1131 bwQchromagram.push_back(bwQchromaFrame);
|
max@1
|
1132
|
max@1
|
1133 for (int iFrame = -framesInBeat; iFrame < 0; ++iFrame)
|
max@1
|
1134 {
|
max@1
|
1135 Feature fwQchromaFrame;
|
max@1
|
1136 fwQchromaFrame.hasTimestamp = true;
|
max@1
|
1137 fwQchromaFrame.timestamp = chromagram[iChroma+iFrame].timestamp;
|
max@1
|
1138 fwQchromaFrame.values = tempChroma; // all between two beats get the same
|
max@1
|
1139 fwQchromagram.push_back(fwQchromaFrame);
|
max@1
|
1140 }
|
max@1
|
1141
|
max@1
|
1142 // 2. increments / resets for current (new) beat
|
max@1
|
1143 currBeatCount++;
|
Chris@24
|
1144 beatTimestamp = newBeatTimestamp;
|
max@1
|
1145 for (size_t i = 0; i < nBin; ++i) tempChroma[i] = 0; // average
|
max@1
|
1146 framesInBeat = 0;
|
max@1
|
1147 }
|
max@1
|
1148 framesInBeat++;
|
max@1
|
1149 for (size_t i = 0; i < nBin; ++i) tempChroma[i] += chromagram[iChroma].values[i];
|
max@1
|
1150 }
|
max@1
|
1151 returnVector.push_back(fwQchromagram);
|
max@1
|
1152 returnVector.push_back(bwQchromagram);
|
Chris@30
|
1153 return returnVector;
|
max@1
|
1154 }
|
max@1
|
1155
|
max@1
|
1156 /* -------------------------------- */
|
max@1
|
1157 /* ------ Support Functions ------ */
|
max@1
|
1158 /* -------------------------------- */
|
max@1
|
1159
|
max@1
|
1160 // one-dimesion median filter
|
max@1
|
1161 arma::vec medfilt1(arma::vec v, int medfilt_length)
|
max@1
|
1162 {
|
max@1
|
1163 int halfWin = medfilt_length/2;
|
max@1
|
1164
|
max@1
|
1165 // result vector
|
max@1
|
1166 arma::vec res = arma::zeros<arma::vec>(v.size());
|
max@1
|
1167
|
max@1
|
1168 // padding
|
max@1
|
1169 arma::vec padV = arma::zeros<arma::vec>(v.size()+medfilt_length-1);
|
max@1
|
1170
|
Chris@21
|
1171 for (int i=medfilt_length/2; i < medfilt_length/2+v.size(); ++ i)
|
max@1
|
1172 {
|
max@1
|
1173 padV(i) = v(i-medfilt_length/2);
|
max@1
|
1174 }
|
max@1
|
1175
|
max@1
|
1176 // Median filter
|
max@1
|
1177 arma::vec win = arma::zeros<arma::vec>(medfilt_length);
|
max@1
|
1178
|
Chris@21
|
1179 for (int i=0; i < v.size(); ++i)
|
max@1
|
1180 {
|
max@1
|
1181 win = padV.subvec(i,i+halfWin*2);
|
max@1
|
1182 win = sort(win);
|
max@1
|
1183 res(i) = win(halfWin);
|
max@1
|
1184 }
|
max@1
|
1185
|
max@1
|
1186 return res;
|
max@1
|
1187 }
|
max@1
|
1188
|
max@1
|
1189
|
max@1
|
1190 // Quantile
|
max@1
|
1191 double quantile(arma::vec v, double p)
|
max@1
|
1192 {
|
max@1
|
1193 arma::vec sortV = arma::sort(v);
|
max@1
|
1194 int n = sortV.size();
|
max@1
|
1195 arma::vec x = arma::zeros<vec>(n+2);
|
max@1
|
1196 arma::vec y = arma::zeros<vec>(n+2);
|
max@1
|
1197
|
max@1
|
1198 x(0) = 0;
|
max@1
|
1199 x(n+1) = 100;
|
max@1
|
1200
|
Chris@21
|
1201 for (int i=1; i<n+1; ++i)
|
max@1
|
1202 x(i) = 100*(0.5+(i-1))/n;
|
max@1
|
1203
|
max@1
|
1204 y(0) = sortV(0);
|
max@1
|
1205 y.subvec(1,n) = sortV;
|
max@1
|
1206 y(n+1) = sortV(n-1);
|
max@1
|
1207
|
max@1
|
1208 arma::uvec x2index = find(x>=p*100);
|
max@1
|
1209
|
max@1
|
1210 // Interpolation
|
max@1
|
1211 double x1 = x(x2index(0)-1);
|
max@1
|
1212 double x2 = x(x2index(0));
|
max@1
|
1213 double y1 = y(x2index(0)-1);
|
max@1
|
1214 double y2 = y(x2index(0));
|
max@1
|
1215
|
max@1
|
1216 double res = (y2-y1)/(x2-x1)*(p*100-x1)+y1;
|
max@1
|
1217
|
max@1
|
1218 return res;
|
max@1
|
1219 }
|
max@1
|
1220
|
max@1
|
1221 // Max Filtering
|
max@1
|
1222 arma::mat maxfilt1(arma::mat inmat, int len)
|
max@1
|
1223 {
|
max@1
|
1224 arma::mat outmat = inmat;
|
max@1
|
1225
|
max@1
|
1226 for (int i=0; i<inmat.n_rows; ++i)
|
max@1
|
1227 {
|
max@1
|
1228 if (arma::sum(inmat.row(i)) > 0)
|
max@1
|
1229 {
|
max@1
|
1230 // Take a window of rows
|
max@1
|
1231 int startWin;
|
max@1
|
1232 int endWin;
|
max@1
|
1233
|
max@1
|
1234 if (0 > i-len)
|
max@1
|
1235 startWin = 0;
|
max@1
|
1236 else
|
max@1
|
1237 startWin = i-len;
|
max@1
|
1238
|
max@1
|
1239 if (inmat.n_rows-1 < i+len-1)
|
max@1
|
1240 endWin = inmat.n_rows-1;
|
max@1
|
1241 else
|
max@1
|
1242 endWin = i+len-1;
|
max@1
|
1243
|
max@1
|
1244 outmat(i,span::all) = arma::max(inmat(span(startWin,endWin),span::all));
|
max@1
|
1245 }
|
max@1
|
1246 }
|
max@1
|
1247
|
max@1
|
1248 return outmat;
|
max@1
|
1249
|
max@1
|
1250 }
|
max@1
|
1251
|
max@1
|
1252 // Null Parts
|
max@1
|
1253 Part nullpart(vector<Part> parts, arma::vec barline)
|
max@1
|
1254 {
|
max@1
|
1255 arma::uvec nullindices = arma::ones<arma::uvec>(barline.size());
|
Chris@21
|
1256 for (int iPart=0; iPart<parts.size(); ++iPart)
|
max@1
|
1257 {
|
Chris@21
|
1258 //for (int iIndex=0; iIndex < parts[0].indices.size(); ++iIndex)
|
Chris@21
|
1259 for (int iIndex=0; iIndex < parts[iPart].indices.size(); ++iIndex)
|
Chris@21
|
1260 for (int i=0; i<parts[iPart].n; ++i)
|
max@1
|
1261 {
|
Chris@21
|
1262 int ind = parts[iPart].indices[iIndex]+i;
|
max@1
|
1263 nullindices(ind) = 0;
|
max@1
|
1264 }
|
max@1
|
1265 }
|
max@7
|
1266
|
max@1
|
1267 Part newPart;
|
max@1
|
1268 newPart.n = 1;
|
max@1
|
1269 uvec q = find(nullindices > 0);
|
max@1
|
1270
|
Chris@21
|
1271 for (int i=0; i<q.size();++i)
|
max@1
|
1272 newPart.indices.push_back(q(i));
|
max@7
|
1273
|
max@1
|
1274 newPart.letter = '-';
|
max@1
|
1275 newPart.value = 0;
|
max@1
|
1276 newPart.level = 0;
|
max@1
|
1277
|
max@1
|
1278 return newPart;
|
max@1
|
1279 }
|
max@1
|
1280
|
max@1
|
1281
|
max@1
|
1282 // Merge Nulls
|
max@1
|
1283 void mergenulls(vector<Part> &parts)
|
max@1
|
1284 {
|
Chris@21
|
1285 for (int iPart=0; iPart<parts.size(); ++iPart)
|
max@1
|
1286 {
|
max@1
|
1287
|
max@1
|
1288 vector<Part> newVectorPart;
|
max@1
|
1289
|
max@1
|
1290 if (parts[iPart].letter.compare("-")==0)
|
max@1
|
1291 {
|
max@1
|
1292 sort (parts[iPart].indices.begin(), parts[iPart].indices.end());
|
Chris@21
|
1293 int newpartind = -1;
|
max@1
|
1294
|
max@1
|
1295 vector<int> indices;
|
max@1
|
1296 indices.push_back(-2);
|
max@1
|
1297
|
Chris@21
|
1298 for (int iIndex=0; iIndex<parts[iPart].indices.size(); ++iIndex)
|
max@1
|
1299 indices.push_back(parts[iPart].indices[iIndex]);
|
max@1
|
1300
|
Chris@21
|
1301 for (int iInd=1; iInd < indices.size(); ++iInd)
|
max@1
|
1302 {
|
max@1
|
1303 if (indices[iInd] - indices[iInd-1] > 1)
|
max@1
|
1304 {
|
max@1
|
1305 newpartind++;
|
max@1
|
1306
|
max@1
|
1307 Part newPart;
|
max@1
|
1308 newPart.letter = 'n';
|
max@1
|
1309 std::stringstream out;
|
max@1
|
1310 out << newpartind+1;
|
max@1
|
1311 newPart.letter.append(out.str());
|
max@1
|
1312 newPart.value = 20+newpartind+1;
|
max@1
|
1313 newPart.n = 1;
|
max@1
|
1314 newPart.indices.push_back(indices[iInd]);
|
max@1
|
1315 newPart.level = 0;
|
max@1
|
1316
|
max@1
|
1317 newVectorPart.push_back(newPart);
|
max@1
|
1318 }
|
max@1
|
1319 else
|
max@1
|
1320 {
|
max@1
|
1321 newVectorPart[newpartind].n = newVectorPart[newpartind].n+1;
|
max@1
|
1322 }
|
max@1
|
1323 }
|
max@1
|
1324 parts.erase (parts.end());
|
max@1
|
1325
|
Chris@21
|
1326 for (int i=0; i<newVectorPart.size(); ++i)
|
max@1
|
1327 parts.push_back(newVectorPart[i]);
|
max@1
|
1328 }
|
max@1
|
1329 }
|
max@1
|
1330 }
|
max@1
|
1331
|
max@1
|
1332 /* ------ Segmentation ------ */
|
max@1
|
1333
|
Chris@19
|
1334 vector<Part> songSegment(Vamp::Plugin::FeatureList quantisedChromagram)
|
max@1
|
1335 {
|
max@1
|
1336
|
max@1
|
1337
|
max@1
|
1338 /* ------ Parameters ------ */
|
max@1
|
1339 double thresh_beat = 0.85;
|
max@1
|
1340 double thresh_seg = 0.80;
|
max@1
|
1341 int medfilt_length = 5;
|
max@1
|
1342 int minlength = 28;
|
max@1
|
1343 int maxlength = 128;
|
max@1
|
1344 double quantilePerc = 0.1;
|
max@1
|
1345 /* ------------------------ */
|
max@1
|
1346
|
max@1
|
1347
|
max@1
|
1348 // Collect Info
|
Chris@19
|
1349 int nBeat = quantisedChromagram.size(); // Number of feature vector
|
Chris@19
|
1350 int nFeatValues = quantisedChromagram[0].values.size(); // Number of values for each feature vector
|
max@1
|
1351
|
Chris@27
|
1352 if (nBeat < minlength) {
|
Chris@27
|
1353 // return a single part
|
Chris@27
|
1354 vector<Part> parts;
|
Chris@27
|
1355 Part newPart;
|
Chris@27
|
1356 newPart.n = 1;
|
Chris@27
|
1357 newPart.indices.push_back(0);
|
Chris@27
|
1358 newPart.letter = "n1";
|
Chris@27
|
1359 newPart.value = 20;
|
Chris@27
|
1360 newPart.level = 0;
|
Chris@27
|
1361 parts.push_back(newPart);
|
Chris@27
|
1362 return parts;
|
Chris@27
|
1363 }
|
Chris@27
|
1364
|
max@1
|
1365 arma::irowvec timeStamp = arma::zeros<arma::imat>(1,nBeat); // Vector of Time Stamps
|
max@1
|
1366
|
Chris@22
|
1367 // Save time stamp as a Vector
|
Chris@19
|
1368 if (quantisedChromagram[0].hasTimestamp)
|
max@1
|
1369 {
|
Chris@21
|
1370 for (int i = 0; i < nBeat; ++ i)
|
Chris@19
|
1371 timeStamp[i] = quantisedChromagram[i].timestamp.nsec;
|
max@1
|
1372 }
|
max@1
|
1373
|
max@1
|
1374
|
max@1
|
1375 // Build a ObservationTOFeatures Matrix
|
max@1
|
1376 arma::mat featVal = arma::zeros<mat>(nBeat,nFeatValues/2);
|
max@1
|
1377
|
Chris@21
|
1378 for (int i = 0; i < nBeat; ++ i)
|
Chris@21
|
1379 for (int j = 0; j < nFeatValues/2; ++ j)
|
max@1
|
1380 {
|
Chris@19
|
1381 featVal(i,j) = (quantisedChromagram[i].values[j]+quantisedChromagram[i].values[j+12]) * 0.8;
|
max@1
|
1382 }
|
max@1
|
1383
|
max@1
|
1384 // Set to arbitrary value to feature vectors with low std
|
max@1
|
1385 arma::mat a = stddev(featVal,1,1);
|
max@1
|
1386
|
max@1
|
1387 // Feature Colleration Matrix
|
max@1
|
1388 arma::mat simmat0 = 1-arma::cor(arma::trans(featVal));
|
max@1
|
1389
|
max@1
|
1390
|
Chris@21
|
1391 for (int i = 0; i < nBeat; ++ i)
|
max@1
|
1392 {
|
max@1
|
1393 if (a(i)<0.000001)
|
max@1
|
1394 {
|
max@1
|
1395 featVal(i,1) = 1000; // arbitrary
|
max@1
|
1396
|
Chris@21
|
1397 for (int j = 0; j < nFeatValues/2; ++j)
|
max@1
|
1398 {
|
max@1
|
1399 simmat0(i,j) = 1;
|
max@1
|
1400 simmat0(j,i) = 1;
|
max@1
|
1401 }
|
max@1
|
1402 }
|
max@1
|
1403 }
|
max@1
|
1404
|
max@1
|
1405 arma::mat simmat = 1-simmat0/2;
|
max@1
|
1406
|
max@1
|
1407 // -------- To delate when the proble with the add of beat will be solved -------
|
Chris@21
|
1408 for (int i = 0; i < nBeat; ++ i)
|
Chris@21
|
1409 for (int j = 0; j < nBeat; ++ j)
|
max@1
|
1410 if (!std::isfinite(simmat(i,j)))
|
max@1
|
1411 simmat(i,j)=0;
|
max@1
|
1412 // ------------------------------------------------------------------------------
|
max@1
|
1413
|
max@1
|
1414 // Median Filtering applied to the Correlation Matrix
|
max@1
|
1415 // The median filter is for each diagonal of the Matrix
|
max@1
|
1416 arma::mat median_simmat = arma::zeros<arma::mat>(nBeat,nBeat);
|
max@1
|
1417
|
Chris@21
|
1418 for (int i = 0; i < nBeat; ++ i)
|
max@1
|
1419 {
|
max@1
|
1420 arma::vec temp = medfilt1(simmat.diag(i),medfilt_length);
|
max@1
|
1421 median_simmat.diag(i) = temp;
|
max@1
|
1422 median_simmat.diag(-i) = temp;
|
max@1
|
1423 }
|
max@1
|
1424
|
Chris@21
|
1425 for (int i = 0; i < nBeat; ++ i)
|
Chris@21
|
1426 for (int j = 0; j < nBeat; ++ j)
|
max@1
|
1427 if (!std::isfinite(median_simmat(i,j)))
|
max@1
|
1428 median_simmat(i,j) = 0;
|
max@1
|
1429
|
max@1
|
1430 // -------------- NOT CONVERTED -------------------------------------
|
max@1
|
1431 // if param.seg.standardise
|
max@1
|
1432 // med_median_simmat = repmat(median(median_simmat),nBeat,1);
|
max@1
|
1433 // std_median_simmat = repmat(std(median_simmat),nBeat,1);
|
max@1
|
1434 // median_simmat = (median_simmat - med_median_simmat) ./ std_median_simmat;
|
max@1
|
1435 // end
|
max@1
|
1436 // --------------------------------------------------------
|
max@1
|
1437
|
max@1
|
1438 // Retrieve Bar Bounderies
|
max@1
|
1439 arma::uvec dup = find(median_simmat > thresh_beat);
|
max@1
|
1440 arma::mat potential_duplicates = arma::zeros<arma::mat>(nBeat,nBeat);
|
max@1
|
1441 potential_duplicates.elem(dup) = arma::ones<arma::vec>(dup.size());
|
max@1
|
1442 potential_duplicates = trimatu(potential_duplicates);
|
max@1
|
1443
|
Chris@21
|
1444 int nPartlengths = round((maxlength-minlength)/4)+1;
|
max@1
|
1445 arma::vec partlengths = zeros<arma::vec>(nPartlengths);
|
max@1
|
1446
|
Chris@21
|
1447 for (int i = 0; i < nPartlengths; ++ i)
|
max@1
|
1448 partlengths(i) = (i*4)+ minlength;
|
max@1
|
1449
|
max@1
|
1450 // initialise arrays
|
max@1
|
1451 arma::cube simArray = zeros<arma::cube>(nBeat,nBeat,nPartlengths);
|
max@1
|
1452 arma::cube decisionArray2 = zeros<arma::cube>(nBeat,nBeat,nPartlengths);
|
max@1
|
1453
|
max@1
|
1454 int conta = 0;
|
max@1
|
1455
|
Chris@21
|
1456 //for (int iLength = 0; iLength < nPartlengths; ++ iLength)
|
Chris@21
|
1457 for (int iLength = 0; iLength < 20; ++ iLength)
|
max@1
|
1458 {
|
Chris@21
|
1459 int len = partlengths(iLength);
|
Chris@21
|
1460 int nUsedBeat = nBeat - len + 1; // number of potential rep beginnings: they can't overlap at the end of the song
|
Chris@33
|
1461
|
Chris@33
|
1462 if (nUsedBeat < 1) continue;
|
max@1
|
1463
|
Chris@21
|
1464 for (int iBeat = 0; iBeat < nUsedBeat; ++ iBeat) // looping over all columns (arbitrarily chosen columns)
|
max@1
|
1465 {
|
max@1
|
1466 arma::uvec help2 = find(potential_duplicates(span(0,nUsedBeat-1),iBeat)==1);
|
max@1
|
1467
|
Chris@21
|
1468 for (int i=0; i<help2.size(); ++i)
|
max@1
|
1469 {
|
max@1
|
1470
|
max@1
|
1471 // measure how well two length len segments go together
|
max@1
|
1472 int kBeat = help2(i);
|
max@1
|
1473 arma::vec distrib = median_simmat(span(iBeat,iBeat+len-1),span(kBeat,kBeat+len-1)).diag(0);
|
max@1
|
1474 simArray(iBeat,kBeat,iLength) = quantile(distrib,quantilePerc);
|
max@1
|
1475 }
|
max@1
|
1476 }
|
max@1
|
1477
|
max@1
|
1478 arma::mat tempM = simArray(span(0,nUsedBeat-1),span(0,nUsedBeat-1),span(iLength,iLength));
|
max@1
|
1479 simArray.slice(iLength)(span(0,nUsedBeat-1),span(0,nUsedBeat-1)) = tempM + arma::trans(tempM) - (eye<mat>(nUsedBeat,nUsedBeat)%tempM);
|
max@1
|
1480
|
max@1
|
1481 // convolution
|
max@1
|
1482 arma::vec K = arma::zeros<vec>(3);
|
max@1
|
1483 K << 0.01 << 0.98 << 0.01;
|
max@1
|
1484
|
max@1
|
1485
|
Chris@21
|
1486 for (int i=0; i<simArray.n_rows; ++i)
|
max@1
|
1487 {
|
max@1
|
1488 arma::rowvec t = arma::conv((arma::rowvec)simArray.slice(iLength).row(i),K);
|
max@1
|
1489 simArray.slice(iLength)(i,span::all) = t.subvec(1,t.size()-2);
|
max@1
|
1490 }
|
max@1
|
1491
|
max@1
|
1492 // take only over-average bars that do not overlap
|
max@1
|
1493
|
max@1
|
1494 arma::mat temp = arma::zeros<mat>(simArray.n_rows, simArray.n_cols);
|
max@1
|
1495 temp(span::all, span(0,nUsedBeat-1)) = simArray.slice(iLength)(span::all,span(0,nUsedBeat-1));
|
max@1
|
1496
|
Chris@21
|
1497 for (int i=0; i<temp.n_rows; ++i)
|
Chris@21
|
1498 for (int j=0; j<nUsedBeat; ++j)
|
max@1
|
1499 if (temp(i,j) < thresh_seg)
|
max@1
|
1500 temp(i,j) = 0;
|
max@1
|
1501
|
max@1
|
1502 decisionArray2.slice(iLength) = temp;
|
max@1
|
1503
|
max@1
|
1504 arma::mat maxMat = maxfilt1(decisionArray2.slice(iLength),len-1);
|
max@1
|
1505
|
Chris@21
|
1506 for (int i=0; i<decisionArray2.n_rows; ++i)
|
Chris@21
|
1507 for (int j=0; j<decisionArray2.n_cols; ++j)
|
max@1
|
1508 if (decisionArray2.slice(iLength)(i,j) < maxMat(i,j))
|
max@1
|
1509 decisionArray2.slice(iLength)(i,j) = 0;
|
max@1
|
1510
|
max@1
|
1511 decisionArray2.slice(iLength) = decisionArray2.slice(iLength) % arma::trans(decisionArray2.slice(iLength));
|
max@1
|
1512
|
Chris@21
|
1513 for (int i=0; i<simArray.n_rows; ++i)
|
Chris@21
|
1514 for (int j=0; j<simArray.n_cols; ++j)
|
max@1
|
1515 if (simArray.slice(iLength)(i,j) < thresh_seg)
|
max@1
|
1516 potential_duplicates(i,j) = 0;
|
max@1
|
1517 }
|
max@1
|
1518
|
max@1
|
1519 // Milk the data
|
max@1
|
1520
|
max@1
|
1521 arma::mat bestval;
|
max@1
|
1522
|
Chris@21
|
1523 for (int iLength=0; iLength<nPartlengths; ++iLength)
|
max@1
|
1524 {
|
max@1
|
1525 arma::mat temp = arma::zeros<arma::mat>(decisionArray2.n_rows,decisionArray2.n_cols);
|
max@1
|
1526
|
Chris@21
|
1527 for (int rows=0; rows<decisionArray2.n_rows; ++rows)
|
Chris@21
|
1528 for (int cols=0; cols<decisionArray2.n_cols; ++cols)
|
max@1
|
1529 if (decisionArray2.slice(iLength)(rows,cols) > 0)
|
max@1
|
1530 temp(rows,cols) = 1;
|
max@1
|
1531
|
max@1
|
1532 arma::vec currLogicSum = arma::sum(temp,1);
|
max@1
|
1533
|
Chris@21
|
1534 for (int iBeat=0; iBeat<nBeat; ++iBeat)
|
max@1
|
1535 if (currLogicSum(iBeat) > 1)
|
max@1
|
1536 {
|
max@1
|
1537 arma::vec t = decisionArray2.slice(iLength)(span::all,iBeat);
|
max@1
|
1538 double currSum = sum(t);
|
max@1
|
1539
|
Chris@21
|
1540 int count = 0;
|
Chris@21
|
1541 for (int i=0; i<t.size(); ++i)
|
max@1
|
1542 if (t(i)>0)
|
max@1
|
1543 count++;
|
max@1
|
1544
|
max@1
|
1545 currSum = (currSum/count)/2;
|
max@1
|
1546
|
max@1
|
1547 arma::rowvec t1;
|
max@1
|
1548 t1 << (currLogicSum(iBeat)-1) * partlengths(iLength) << currSum << iLength << iBeat << currLogicSum(iBeat);
|
max@1
|
1549
|
max@1
|
1550 bestval = join_cols(bestval,t1);
|
max@1
|
1551 }
|
max@1
|
1552 }
|
max@1
|
1553
|
max@1
|
1554 // Definition of the resulting vector
|
max@1
|
1555 vector<Part> parts;
|
max@1
|
1556
|
max@1
|
1557 // make a table of all valid sets of parts
|
max@1
|
1558
|
max@1
|
1559 char partletters[] = {'A','B','C','D','E','F','G', 'H','I','J','K','L','M','N','O','P','Q','R','S'};
|
Chris@21
|
1560 int partvalues[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19};
|
max@1
|
1561 arma::vec valid_sets = arma::ones<arma::vec>(bestval.n_rows);
|
max@1
|
1562
|
max@1
|
1563 if (!bestval.is_empty())
|
max@1
|
1564 {
|
max@1
|
1565
|
max@1
|
1566 // In questo punto viene introdotto un errore alla 3 cifra decimale
|
max@1
|
1567
|
max@1
|
1568 arma::colvec t = arma::zeros<arma::colvec>(bestval.n_rows);
|
Chris@21
|
1569 for (int i=0; i<bestval.n_rows; ++i)
|
max@1
|
1570 {
|
max@1
|
1571 t(i) = bestval(i,1)*2;
|
max@1
|
1572 }
|
max@1
|
1573
|
max@1
|
1574 double m = t.max();
|
max@1
|
1575
|
max@1
|
1576 bestval(span::all,1) = bestval(span::all,1) / m;
|
max@1
|
1577 bestval(span::all,0) = bestval(span::all,0) + bestval(span::all,1);
|
max@1
|
1578
|
max@1
|
1579 arma::mat bestval2;
|
Chris@21
|
1580 for (int i=0; i<bestval.n_cols; ++i)
|
max@1
|
1581 if (i!=1)
|
max@1
|
1582 bestval2 = join_rows(bestval2,bestval.col(i));
|
max@1
|
1583
|
Chris@21
|
1584 for (int kSeg=0; kSeg<6; ++kSeg)
|
max@1
|
1585 {
|
max@1
|
1586 arma::mat currbestvals = arma::zeros<arma::mat>(bestval2.n_rows, bestval2.n_cols);
|
Chris@21
|
1587 for (int i=0; i<bestval2.n_rows; ++i)
|
Chris@21
|
1588 for (int j=0; j<bestval2.n_cols; ++j)
|
max@1
|
1589 if (valid_sets(i))
|
max@1
|
1590 currbestvals(i,j) = bestval2(i,j);
|
max@1
|
1591
|
max@1
|
1592 arma::vec t1 = currbestvals.col(0);
|
max@1
|
1593 double ma;
|
max@1
|
1594 uword maIdx;
|
max@1
|
1595 ma = t1.max(maIdx);
|
max@6
|
1596
|
max@6
|
1597 if ((maIdx == 0)&&(ma == 0))
|
max@6
|
1598 break;
|
max@1
|
1599
|
Chris@28
|
1600 int bestLength = lrint(partlengths(currbestvals(maIdx,1)));
|
max@1
|
1601 arma::rowvec bestIndices = decisionArray2.slice(currbestvals(maIdx,1))(currbestvals(maIdx,2),span::all);
|
max@1
|
1602
|
max@1
|
1603 arma::rowvec bestIndicesMap = arma::zeros<arma::rowvec>(bestIndices.size());
|
Chris@21
|
1604 for (int i=0; i<bestIndices.size(); ++i)
|
max@1
|
1605 if (bestIndices(i)>0)
|
max@1
|
1606 bestIndicesMap(i) = 1;
|
max@1
|
1607
|
max@1
|
1608 arma::rowvec mask = arma::zeros<arma::rowvec>(bestLength*2-1);
|
Chris@21
|
1609 for (int i=0; i<bestLength; ++i)
|
max@1
|
1610 mask(i+bestLength-1) = 1;
|
max@1
|
1611
|
max@1
|
1612 arma::rowvec t2 = arma::conv(bestIndicesMap,mask);
|
max@1
|
1613 arma::rowvec island = t2.subvec(mask.size()/2,t2.size()-1-mask.size()/2);
|
max@1
|
1614
|
max@1
|
1615 // Save results in the structure
|
max@1
|
1616 Part newPart;
|
max@1
|
1617 newPart.n = bestLength;
|
max@1
|
1618 uvec q1 = find(bestIndices > 0);
|
max@1
|
1619
|
Chris@21
|
1620 for (int i=0; i<q1.size();++i)
|
max@1
|
1621 newPart.indices.push_back(q1(i));
|
max@1
|
1622
|
max@1
|
1623 newPart.letter = partletters[kSeg];
|
max@1
|
1624 newPart.value = partvalues[kSeg];
|
max@1
|
1625 newPart.level = kSeg+1;
|
max@1
|
1626 parts.push_back(newPart);
|
max@1
|
1627
|
max@1
|
1628 uvec q2 = find(valid_sets==1);
|
max@1
|
1629
|
Chris@21
|
1630 for (int i=0; i<q2.size(); ++i)
|
max@1
|
1631 {
|
Chris@21
|
1632 int iSet = q2(i);
|
Chris@21
|
1633 int s = partlengths(bestval2(iSet,1));
|
max@1
|
1634
|
max@1
|
1635 arma::rowvec mask1 = arma::zeros<arma::rowvec>(s*2-1);
|
Chris@21
|
1636 for (int i=0; i<s; ++i)
|
max@1
|
1637 mask1(i+s-1) = 1;
|
max@1
|
1638
|
max@1
|
1639 arma::rowvec Ind = decisionArray2.slice(bestval2(iSet,1))(bestval2(iSet,2),span::all);
|
max@1
|
1640 arma::rowvec IndMap = arma::zeros<arma::rowvec>(Ind.size());
|
Chris@21
|
1641 for (int i=0; i<Ind.size(); ++i)
|
max@1
|
1642 if (Ind(i)>0)
|
max@1
|
1643 IndMap(i) = 2;
|
max@1
|
1644
|
max@1
|
1645 arma::rowvec t3 = arma::conv(IndMap,mask1);
|
max@6
|
1646 arma::rowvec currislands = t3.subvec(mask1.size()/2,t3.size()-1-mask1.size()/2);
|
max@1
|
1647 arma::rowvec islandsdMult = currislands%island;
|
max@6
|
1648
|
max@1
|
1649 arma::uvec islandsIndex = find(islandsdMult > 0);
|
max@1
|
1650
|
max@6
|
1651 if (islandsIndex.size() > 0)
|
max@1
|
1652 valid_sets(iSet) = 0;
|
max@1
|
1653 }
|
max@1
|
1654 }
|
max@1
|
1655 }
|
max@1
|
1656 else
|
max@1
|
1657 {
|
max@1
|
1658 Part newPart;
|
max@1
|
1659 newPart.n = nBeat;
|
Chris@33
|
1660 newPart.indices.push_back(0);
|
max@1
|
1661 newPart.letter = 'A';
|
max@1
|
1662 newPart.value = 1;
|
max@1
|
1663 newPart.level = 1;
|
max@1
|
1664 parts.push_back(newPart);
|
max@1
|
1665 }
|
max@6
|
1666
|
max@1
|
1667 arma::vec bar = linspace(1,nBeat,nBeat);
|
max@1
|
1668 Part np = nullpart(parts,bar);
|
max@7
|
1669
|
max@1
|
1670 parts.push_back(np);
|
max@1
|
1671
|
max@1
|
1672 // -------------- NOT CONVERTED -------------------------------------
|
max@1
|
1673 // if param.seg.editor
|
max@1
|
1674 // [pa, ta] = partarray(parts);
|
max@1
|
1675 // parts = editorssearch(pa, ta, parts);
|
max@1
|
1676 // parts = [parts, nullpart(parts,1:nBeat)];
|
max@1
|
1677 // end
|
max@1
|
1678 // ------------------------------------------------------------------
|
max@1
|
1679
|
max@1
|
1680
|
max@1
|
1681 mergenulls(parts);
|
max@1
|
1682
|
max@1
|
1683
|
max@1
|
1684 // -------------- NOT CONVERTED -------------------------------------
|
max@1
|
1685 // if param.seg.editor
|
max@1
|
1686 // [pa, ta] = partarray(parts);
|
max@1
|
1687 // parts = editorssearch(pa, ta, parts);
|
max@1
|
1688 // parts = [parts, nullpart(parts,1:nBeat)];
|
max@1
|
1689 // end
|
max@1
|
1690 // ------------------------------------------------------------------
|
max@1
|
1691
|
max@1
|
1692 return parts;
|
max@1
|
1693 }
|
max@1
|
1694
|
max@1
|
1695
|
max@1
|
1696
|
Chris@19
|
1697 void songSegmentChroma(Vamp::Plugin::FeatureList quantisedChromagram, vector<Part> &parts)
|
max@1
|
1698 {
|
max@1
|
1699 // Collect Info
|
Chris@19
|
1700 int nBeat = quantisedChromagram.size(); // Number of feature vector
|
Chris@19
|
1701 int nFeatValues = quantisedChromagram[0].values.size(); // Number of values for each feature vector
|
max@1
|
1702
|
max@1
|
1703 arma::mat synchTreble = arma::zeros<mat>(nBeat,nFeatValues/2);
|
max@1
|
1704
|
Chris@21
|
1705 for (int i = 0; i < nBeat; ++ i)
|
Chris@21
|
1706 for (int j = 0; j < nFeatValues/2; ++ j)
|
max@1
|
1707 {
|
Chris@19
|
1708 synchTreble(i,j) = quantisedChromagram[i].values[j];
|
max@1
|
1709 }
|
max@1
|
1710
|
max@1
|
1711 arma::mat synchBass = arma::zeros<mat>(nBeat,nFeatValues/2);
|
max@1
|
1712
|
Chris@21
|
1713 for (int i = 0; i < nBeat; ++ i)
|
Chris@21
|
1714 for (int j = 0; j < nFeatValues/2; ++ j)
|
max@1
|
1715 {
|
Chris@19
|
1716 synchBass(i,j) = quantisedChromagram[i].values[j+12];
|
max@1
|
1717 }
|
max@1
|
1718
|
max@1
|
1719 // Process
|
max@1
|
1720
|
Chris@19
|
1721 arma::mat segTreble = arma::zeros<arma::mat>(quantisedChromagram.size(),quantisedChromagram[0].values.size()/2);
|
Chris@19
|
1722 arma::mat segBass = arma::zeros<arma::mat>(quantisedChromagram.size(),quantisedChromagram[0].values.size()/2);
|
max@1
|
1723
|
Chris@21
|
1724 for (int iPart=0; iPart<parts.size(); ++iPart)
|
max@1
|
1725 {
|
max@1
|
1726 parts[iPart].nInd = parts[iPart].indices.size();
|
max@1
|
1727
|
Chris@21
|
1728 for (int kOccur=0; kOccur<parts[iPart].nInd; ++kOccur)
|
max@1
|
1729 {
|
max@1
|
1730 int kStartIndex = parts[iPart].indices[kOccur];
|
max@1
|
1731 int kEndIndex = kStartIndex + parts[iPart].n-1;
|
max@1
|
1732
|
max@1
|
1733 segTreble.rows(kStartIndex,kEndIndex) = segTreble.rows(kStartIndex,kEndIndex) + synchTreble.rows(kStartIndex,kEndIndex);
|
max@1
|
1734 segBass.rows(kStartIndex,kEndIndex) = segBass.rows(kStartIndex,kEndIndex) + synchBass.rows(kStartIndex,kEndIndex);
|
max@1
|
1735 }
|
max@1
|
1736 }
|
max@1
|
1737 }
|
max@1
|
1738
|
max@1
|
1739
|
max@1
|
1740 // Segment Integration
|
max@1
|
1741 vector<Part> songSegmentIntegration(vector<Part> &parts)
|
max@1
|
1742 {
|
max@1
|
1743 // Break up parts (every part will have one instance)
|
max@1
|
1744 vector<Part> newPartVector;
|
max@1
|
1745 vector<int> partindices;
|
max@1
|
1746
|
Chris@21
|
1747 for (int iPart=0; iPart<parts.size(); ++iPart)
|
max@1
|
1748 {
|
max@1
|
1749 parts[iPart].nInd = parts[iPart].indices.size();
|
Chris@21
|
1750 for (int iInstance=0; iInstance<parts[iPart].nInd; ++iInstance)
|
max@1
|
1751 {
|
max@1
|
1752 Part newPart;
|
max@1
|
1753 newPart.n = parts[iPart].n;
|
max@1
|
1754 newPart.letter = parts[iPart].letter;
|
max@1
|
1755 newPart.value = parts[iPart].value;
|
max@1
|
1756 newPart.level = parts[iPart].level;
|
max@1
|
1757 newPart.indices.push_back(parts[iPart].indices[iInstance]);
|
max@1
|
1758 newPart.nInd = 1;
|
max@1
|
1759 partindices.push_back(parts[iPart].indices[iInstance]);
|
max@1
|
1760
|
max@1
|
1761 newPartVector.push_back(newPart);
|
max@1
|
1762 }
|
max@1
|
1763 }
|
max@1
|
1764
|
max@1
|
1765
|
max@1
|
1766 // Sort the parts in order of occurrence
|
max@1
|
1767 sort (partindices.begin(), partindices.end());
|
max@1
|
1768
|
Chris@21
|
1769 for (int i=0; i<partindices.size(); ++i)
|
max@1
|
1770 {
|
max@1
|
1771 bool found = false;
|
max@1
|
1772 int in=0;
|
max@1
|
1773 while (!found)
|
max@1
|
1774 {
|
max@1
|
1775 if (newPartVector[in].indices[0] == partindices[i])
|
max@1
|
1776 {
|
max@1
|
1777 newPartVector.push_back(newPartVector[in]);
|
max@1
|
1778 newPartVector.erase(newPartVector.begin()+in);
|
max@1
|
1779 found = true;
|
max@1
|
1780 }
|
max@1
|
1781 else
|
max@1
|
1782 in++;
|
max@1
|
1783 }
|
max@1
|
1784 }
|
max@1
|
1785
|
max@1
|
1786 // Clear the vector
|
Chris@21
|
1787 for (int iNewpart=1; iNewpart < newPartVector.size(); ++iNewpart)
|
max@1
|
1788 {
|
max@1
|
1789 if (newPartVector[iNewpart].n < 12)
|
max@1
|
1790 {
|
max@1
|
1791 newPartVector[iNewpart-1].n = newPartVector[iNewpart-1].n + newPartVector[iNewpart].n;
|
max@1
|
1792 newPartVector.erase(newPartVector.begin()+iNewpart);
|
max@1
|
1793 }
|
max@1
|
1794 }
|
max@1
|
1795
|
max@1
|
1796 return newPartVector;
|
max@1
|
1797 }
|
max@1
|
1798
|
max@1
|
1799 // Segmenter
|
Chris@19
|
1800 Vamp::Plugin::FeatureList SongPartitioner::runSegmenter(Vamp::Plugin::FeatureList quantisedChromagram)
|
max@1
|
1801 {
|
max@1
|
1802 /* --- Display Information --- */
|
Chris@19
|
1803 int numBeat = quantisedChromagram.size();
|
Chris@19
|
1804 int numFeats = quantisedChromagram[0].values.size();
|
max@1
|
1805
|
max@1
|
1806 vector<Part> parts;
|
max@1
|
1807 vector<Part> finalParts;
|
max@1
|
1808
|
Chris@19
|
1809 parts = songSegment(quantisedChromagram);
|
Chris@19
|
1810 songSegmentChroma(quantisedChromagram,parts);
|
max@7
|
1811
|
max@1
|
1812 finalParts = songSegmentIntegration(parts);
|
max@1
|
1813
|
max@1
|
1814
|
max@1
|
1815 // TEMP ----
|
Chris@21
|
1816 /*for (int i=0;i<finalParts.size(); ++i)
|
max@1
|
1817 {
|
max@6
|
1818 std::cout << "Parts n° " << i << std::endl;
|
max@6
|
1819 std::cout << "n°: " << finalParts[i].n << std::endl;
|
max@6
|
1820 std::cout << "letter: " << finalParts[i].letter << std::endl;
|
max@1
|
1821
|
max@6
|
1822 std::cout << "indices: ";
|
Chris@21
|
1823 for (int j=0;j<finalParts[i].indices.size(); ++j)
|
max@6
|
1824 std::cout << finalParts[i].indices[j] << " ";
|
max@6
|
1825
|
max@6
|
1826 std::cout << std::endl;
|
max@6
|
1827 std::cout << "level: " << finalParts[i].level << std::endl;
|
max@1
|
1828 }*/
|
max@1
|
1829
|
max@1
|
1830 // ---------
|
max@1
|
1831
|
max@1
|
1832
|
max@1
|
1833 // Output
|
max@1
|
1834
|
max@1
|
1835 Vamp::Plugin::FeatureList results;
|
max@1
|
1836
|
max@1
|
1837
|
max@1
|
1838 Feature seg;
|
max@1
|
1839
|
max@1
|
1840 arma::vec indices;
|
Chris@21
|
1841 int idx=0;
|
max@1
|
1842 vector<int> values;
|
max@1
|
1843 vector<string> letters;
|
max@1
|
1844
|
Chris@21
|
1845 for (int iPart=0; iPart<finalParts.size()-1; ++iPart)
|
max@1
|
1846 {
|
Chris@21
|
1847 int iInstance=0;
|
max@1
|
1848 seg.hasTimestamp = true;
|
max@1
|
1849
|
max@1
|
1850 int ind = finalParts[iPart].indices[iInstance];
|
max@1
|
1851 int ind1 = finalParts[iPart+1].indices[iInstance];
|
max@1
|
1852
|
Chris@19
|
1853 seg.timestamp = quantisedChromagram[ind].timestamp;
|
max@1
|
1854 seg.hasDuration = true;
|
Chris@19
|
1855 seg.duration = quantisedChromagram[ind1].timestamp-quantisedChromagram[ind].timestamp;
|
max@1
|
1856 seg.values.clear();
|
max@1
|
1857 seg.values.push_back(finalParts[iPart].value);
|
max@1
|
1858 seg.label = finalParts[iPart].letter;
|
max@1
|
1859
|
max@1
|
1860 results.push_back(seg);
|
max@1
|
1861 }
|
max@1
|
1862
|
max@1
|
1863 int ind = finalParts[finalParts.size()-1].indices[0];
|
Chris@19
|
1864 seg.timestamp = quantisedChromagram[ind].timestamp;
|
max@1
|
1865 seg.hasDuration = true;
|
Chris@19
|
1866 seg.duration = quantisedChromagram[quantisedChromagram.size()-1].timestamp-quantisedChromagram[ind].timestamp;
|
max@1
|
1867 seg.values.clear();
|
max@1
|
1868 seg.values.push_back(finalParts[finalParts.size()-1].value);
|
max@1
|
1869 seg.label = finalParts[finalParts.size()-1].letter;
|
max@1
|
1870
|
max@1
|
1871 results.push_back(seg);
|
max@1
|
1872
|
max@1
|
1873 return results;
|
max@1
|
1874 }
|
max@1
|
1875
|
max@1
|
1876
|
max@1
|
1877
|
max@1
|
1878
|
max@1
|
1879
|
max@1
|
1880
|
max@1
|
1881
|
max@1
|
1882
|
max@1
|
1883
|
max@1
|
1884
|
max@1
|
1885
|
max@1
|
1886
|
max@1
|
1887
|
max@1
|
1888
|
max@1
|
1889
|
max@1
|
1890
|
max@1
|
1891
|