max@1
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
max@1
|
2
|
max@1
|
3 /*
|
max@1
|
4 QM Vamp Plugin Set
|
max@1
|
5
|
max@1
|
6 Centre for Digital Music, Queen Mary, University of London.
|
max@1
|
7
|
max@1
|
8 This program is free software; you can redistribute it and/or
|
max@1
|
9 modify it under the terms of the GNU General Public License as
|
max@1
|
10 published by the Free Software Foundation; either version 2 of the
|
max@1
|
11 License, or (at your option) any later version. See the file
|
max@1
|
12 COPYING included with this distribution for more information.
|
max@1
|
13 */
|
max@1
|
14
|
max@1
|
15 #include "SongParts.h"
|
max@1
|
16
|
max@1
|
17 #include <base/Window.h>
|
max@1
|
18 #include <dsp/onsets/DetectionFunction.h>
|
max@1
|
19 #include <dsp/onsets/PeakPicking.h>
|
max@1
|
20 #include <dsp/transforms/FFT.h>
|
max@1
|
21 #include <dsp/tempotracking/TempoTrackV2.h>
|
max@1
|
22 #include <dsp/tempotracking/DownBeat.h>
|
max@1
|
23 #include <chromamethods.h>
|
max@1
|
24 #include <maths/MathUtilities.h>
|
max@1
|
25 #include <boost/numeric/ublas/matrix.hpp>
|
max@1
|
26 #include <boost/numeric/ublas/io.hpp>
|
max@1
|
27 #include <boost/math/distributions/normal.hpp>
|
max@1
|
28 #include "armadillo"
|
max@1
|
29 #include <fstream>
|
max@1
|
30 #include <sstream>
|
max@1
|
31 #include <cmath>
|
max@1
|
32 #include <vector>
|
max@1
|
33
|
max@1
|
34 #include <vamp-sdk/Plugin.h>
|
max@1
|
35
|
max@1
|
36 using namespace boost::numeric;
|
max@1
|
37 using namespace arma;
|
max@1
|
38 using std::string;
|
max@1
|
39 using std::vector;
|
max@1
|
40 using std::cerr;
|
max@1
|
41 using std::cout;
|
max@1
|
42 using std::endl;
|
max@1
|
43
|
max@1
|
44
|
max@1
|
45 #ifndef __GNUC__
|
max@1
|
46 #include <alloca.h>
|
max@1
|
47 #endif
|
max@1
|
48
|
max@1
|
49
|
max@1
|
50 // Result Struct
|
max@1
|
51 typedef struct Part {
|
max@1
|
52 int n;
|
max@1
|
53 vector<unsigned> indices;
|
max@1
|
54 string letter;
|
max@1
|
55 unsigned value;
|
max@1
|
56 int level;
|
max@1
|
57 int nInd;
|
max@1
|
58 }Part;
|
max@1
|
59
|
max@1
|
60
|
max@1
|
61 /* ------------------------------------ */
|
max@1
|
62 /* ----- BEAT DETECTOR CLASS ---------- */
|
max@1
|
63 /* ------------------------------------ */
|
max@1
|
64
|
max@1
|
65 class BeatTrackerData
|
max@1
|
66 {
|
max@1
|
67 /* --- ATTRIBUTES --- */
|
max@1
|
68 public:
|
max@1
|
69 DFConfig dfConfig;
|
max@1
|
70 DetectionFunction *df;
|
max@1
|
71 DownBeat *downBeat;
|
max@1
|
72 vector<double> dfOutput;
|
max@1
|
73 Vamp::RealTime origin;
|
max@1
|
74
|
max@1
|
75
|
max@1
|
76 /* --- METHODS --- */
|
max@1
|
77
|
max@1
|
78 /* --- Constructor --- */
|
max@1
|
79 public:
|
max@1
|
80 BeatTrackerData(float rate, const DFConfig &config) : dfConfig(config) {
|
max@1
|
81
|
max@1
|
82 df = new DetectionFunction(config);
|
max@1
|
83 // decimation factor aims at resampling to c. 3KHz; must be power of 2
|
max@1
|
84 int factor = MathUtilities::nextPowerOfTwo(rate / 3000);
|
max@1
|
85 // std::cerr << "BeatTrackerData: factor = " << factor << std::endl;
|
max@1
|
86 downBeat = new DownBeat(rate, factor, config.stepSize);
|
max@1
|
87 }
|
max@1
|
88
|
max@1
|
89 /* --- Desctructor --- */
|
max@1
|
90 ~BeatTrackerData() {
|
max@1
|
91 delete df;
|
max@1
|
92 delete downBeat;
|
max@1
|
93 }
|
max@1
|
94
|
max@1
|
95 void reset() {
|
max@1
|
96 delete df;
|
max@1
|
97 df = new DetectionFunction(dfConfig);
|
max@1
|
98 dfOutput.clear();
|
max@1
|
99 downBeat->resetAudioBuffer();
|
max@1
|
100 origin = Vamp::RealTime::zeroTime;
|
max@1
|
101 }
|
max@1
|
102 };
|
max@1
|
103
|
max@1
|
104
|
max@1
|
105 /* --------------------------------------- */
|
max@1
|
106 /* ----- CHROMA EXTRACTOR CLASS ---------- */
|
max@1
|
107 /* --------------------------------------- */
|
max@1
|
108
|
max@1
|
109 class ChromaData
|
max@1
|
110 {
|
max@1
|
111
|
max@1
|
112 /* --- ATTRIBUTES --- */
|
max@1
|
113
|
max@1
|
114 public:
|
max@1
|
115 int frameCount;
|
max@1
|
116 int nBPS;
|
max@1
|
117 Vamp::Plugin::FeatureList logSpectrum;
|
max@1
|
118 size_t blockSize;
|
max@1
|
119 int lengthOfNoteIndex;
|
max@1
|
120 vector<float> meanTunings;
|
max@1
|
121 vector<float> localTunings;
|
max@1
|
122 float whitening;
|
max@1
|
123 float preset;
|
max@1
|
124 float useNNLS;
|
max@1
|
125 vector<float> localTuning;
|
max@1
|
126 vector<float> kernelValue;
|
max@1
|
127 vector<int> kernelFftIndex;
|
max@1
|
128 vector<int> kernelNoteIndex;
|
max@1
|
129 float *dict;
|
max@1
|
130 bool tuneLocal;
|
max@1
|
131 float doNormalizeChroma;
|
max@1
|
132 float rollon;
|
max@1
|
133 float s;
|
max@1
|
134 vector<float> hw;
|
max@1
|
135 vector<float> sinvalues;
|
max@1
|
136 vector<float> cosvalues;
|
max@1
|
137 Window<float> window;
|
max@1
|
138 FFTReal fft;
|
max@1
|
139 size_t inputSampleRate;
|
max@1
|
140
|
max@1
|
141 /* --- METHODS --- */
|
max@1
|
142
|
max@1
|
143 /* --- Constructor --- */
|
max@1
|
144
|
max@1
|
145 public:
|
max@1
|
146 ChromaData(float inputSampleRate, size_t block_size) :
|
max@1
|
147 frameCount(0),
|
max@1
|
148 nBPS(3),
|
max@1
|
149 logSpectrum(0),
|
max@1
|
150 blockSize(0),
|
max@1
|
151 lengthOfNoteIndex(0),
|
max@1
|
152 meanTunings(0),
|
max@1
|
153 localTunings(0),
|
max@1
|
154 whitening(1.0),
|
max@1
|
155 preset(0.0),
|
max@1
|
156 useNNLS(1.0),
|
max@1
|
157 localTuning(0.0),
|
max@1
|
158 kernelValue(0),
|
max@1
|
159 kernelFftIndex(0),
|
max@1
|
160 kernelNoteIndex(0),
|
max@1
|
161 dict(0),
|
max@1
|
162 tuneLocal(0.0),
|
max@1
|
163 doNormalizeChroma(0),
|
max@1
|
164 rollon(0.0),
|
max@1
|
165 s(0.7),
|
max@1
|
166 sinvalues(0),
|
max@1
|
167 cosvalues(0),
|
max@1
|
168 window(HanningWindow, block_size),
|
max@1
|
169 fft(block_size),
|
max@1
|
170 inputSampleRate(inputSampleRate)
|
max@1
|
171 {
|
max@1
|
172 // make the *note* dictionary matrix
|
max@1
|
173 dict = new float[nNote * 84];
|
max@1
|
174 for (int i = 0; i < nNote * 84; ++i) dict[i] = 0.0;
|
max@1
|
175 blockSize = block_size;
|
max@1
|
176 }
|
max@1
|
177
|
max@1
|
178
|
max@1
|
179 /* --- Desctructor --- */
|
max@1
|
180
|
max@1
|
181 ~ChromaData() {
|
max@1
|
182 delete [] dict;
|
max@1
|
183 }
|
max@1
|
184
|
max@1
|
185 /* --- Public Methods --- */
|
max@1
|
186
|
max@1
|
187 void reset() {
|
max@1
|
188 frameCount = 0;
|
max@1
|
189 logSpectrum.clear();
|
max@1
|
190 for (int iBPS = 0; iBPS < 3; ++iBPS) {
|
max@1
|
191 meanTunings[iBPS] = 0;
|
max@1
|
192 localTunings[iBPS] = 0;
|
max@1
|
193 }
|
max@1
|
194 localTuning.clear();
|
max@1
|
195 }
|
max@1
|
196
|
max@1
|
197 void baseProcess(float *inputBuffers, Vamp::RealTime timestamp)
|
max@1
|
198 {
|
max@1
|
199
|
max@1
|
200 frameCount++;
|
max@1
|
201 float *magnitude = new float[blockSize/2];
|
max@1
|
202 double *fftReal = new double[blockSize];
|
max@1
|
203 double *fftImag = new double[blockSize];
|
max@1
|
204
|
max@1
|
205 // FFTReal wants doubles, so we need to make a local copy of inputBuffers
|
max@1
|
206 double *inputBuffersDouble = new double[blockSize];
|
max@1
|
207 for (size_t i = 0; i < blockSize; i++) inputBuffersDouble[i] = inputBuffers[i];
|
max@1
|
208
|
max@1
|
209 fft.process(false, inputBuffersDouble, fftReal, fftImag);
|
max@1
|
210
|
max@1
|
211 float energysum = 0;
|
max@1
|
212 // make magnitude
|
max@1
|
213 float maxmag = -10000;
|
max@1
|
214 for (int iBin = 0; iBin < static_cast<int>(blockSize/2); iBin++) {
|
max@1
|
215 magnitude[iBin] = sqrt(fftReal[iBin] * fftReal[iBin] +
|
max@1
|
216 fftImag[iBin] * fftImag[iBin]);
|
max@1
|
217 if (magnitude[iBin]>blockSize*1.0) magnitude[iBin] = blockSize;
|
max@1
|
218 // a valid audio signal (between -1 and 1) should not be limited here.
|
max@1
|
219 if (maxmag < magnitude[iBin]) maxmag = magnitude[iBin];
|
max@1
|
220 if (rollon > 0) {
|
max@1
|
221 energysum += pow(magnitude[iBin],2);
|
max@1
|
222 }
|
max@1
|
223 }
|
max@1
|
224
|
max@1
|
225 float cumenergy = 0;
|
max@1
|
226 if (rollon > 0) {
|
max@1
|
227 for (int iBin = 2; iBin < static_cast<int>(blockSize/2); iBin++) {
|
max@1
|
228 cumenergy += pow(magnitude[iBin],2);
|
max@1
|
229 if (cumenergy < energysum * rollon / 100) magnitude[iBin-2] = 0;
|
max@1
|
230 else break;
|
max@1
|
231 }
|
max@1
|
232 }
|
max@1
|
233
|
max@1
|
234 if (maxmag < 2) {
|
max@1
|
235 // cerr << "timestamp " << timestamp << ": very low magnitude, setting magnitude to all zeros" << endl;
|
max@1
|
236 for (int iBin = 0; iBin < static_cast<int>(blockSize/2); iBin++) {
|
max@1
|
237 magnitude[iBin] = 0;
|
max@1
|
238 }
|
max@1
|
239 }
|
max@1
|
240
|
max@1
|
241 // cerr << magnitude[200] << endl;
|
max@1
|
242
|
max@1
|
243 // note magnitude mapping using pre-calculated matrix
|
max@1
|
244 float *nm = new float[nNote]; // note magnitude
|
max@1
|
245 for (int iNote = 0; iNote < nNote; iNote++) {
|
max@1
|
246 nm[iNote] = 0; // initialise as 0
|
max@1
|
247 }
|
max@1
|
248 int binCount = 0;
|
max@1
|
249 for (vector<float>::iterator it = kernelValue.begin(); it != kernelValue.end(); ++it) {
|
max@1
|
250 nm[kernelNoteIndex[binCount]] += magnitude[kernelFftIndex[binCount]] * kernelValue[binCount];
|
max@1
|
251 binCount++;
|
max@1
|
252 }
|
max@1
|
253
|
max@1
|
254 float one_over_N = 1.0/frameCount;
|
max@1
|
255 // update means of complex tuning variables
|
max@1
|
256 for (int iBPS = 0; iBPS < nBPS; ++iBPS) meanTunings[iBPS] *= float(frameCount-1)*one_over_N;
|
max@1
|
257
|
max@1
|
258 for (int iTone = 0; iTone < round(nNote*0.62/nBPS)*nBPS+1; iTone = iTone + nBPS) {
|
max@1
|
259 for (int iBPS = 0; iBPS < nBPS; ++iBPS) meanTunings[iBPS] += nm[iTone + iBPS]*one_over_N;
|
max@1
|
260 float ratioOld = 0.997;
|
max@1
|
261 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
|
max@1
|
262 localTunings[iBPS] *= ratioOld;
|
max@1
|
263 localTunings[iBPS] += nm[iTone + iBPS] * (1 - ratioOld);
|
max@1
|
264 }
|
max@1
|
265 }
|
max@1
|
266
|
max@1
|
267 float localTuningImag = 0;
|
max@1
|
268 float localTuningReal = 0;
|
max@1
|
269 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
|
max@1
|
270 localTuningReal += localTunings[iBPS] * cosvalues[iBPS];
|
max@1
|
271 localTuningImag += localTunings[iBPS] * sinvalues[iBPS];
|
max@1
|
272 }
|
max@1
|
273
|
max@1
|
274 float normalisedtuning = atan2(localTuningImag, localTuningReal)/(2*M_PI);
|
max@1
|
275 localTuning.push_back(normalisedtuning);
|
max@1
|
276
|
max@1
|
277 Vamp::Plugin::Feature f1; // logfreqspec
|
max@1
|
278 f1.hasTimestamp = true;
|
max@1
|
279 f1.timestamp = timestamp;
|
max@1
|
280 for (int iNote = 0; iNote < nNote; iNote++) {
|
max@1
|
281 f1.values.push_back(nm[iNote]);
|
max@1
|
282 }
|
max@1
|
283
|
max@1
|
284 // deletes
|
max@1
|
285 delete[] inputBuffersDouble;
|
max@1
|
286 delete[] magnitude;
|
max@1
|
287 delete[] fftReal;
|
max@1
|
288 delete[] fftImag;
|
max@1
|
289 delete[] nm;
|
max@1
|
290
|
max@1
|
291 logSpectrum.push_back(f1); // remember note magnitude
|
max@1
|
292 }
|
max@1
|
293
|
max@1
|
294 bool initialise()
|
max@1
|
295 {
|
max@1
|
296 dictionaryMatrix(dict, s);
|
max@1
|
297
|
max@1
|
298 // make things for tuning estimation
|
max@1
|
299 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
|
max@1
|
300 sinvalues.push_back(sin(2*M_PI*(iBPS*1.0/nBPS)));
|
max@1
|
301 cosvalues.push_back(cos(2*M_PI*(iBPS*1.0/nBPS)));
|
max@1
|
302 }
|
max@1
|
303
|
max@1
|
304
|
max@1
|
305 // make hamming window of length 1/2 octave
|
max@1
|
306 int hamwinlength = nBPS * 6 + 1;
|
max@1
|
307 float hamwinsum = 0;
|
max@1
|
308 for (int i = 0; i < hamwinlength; ++i) {
|
max@1
|
309 hw.push_back(0.54 - 0.46 * cos((2*M_PI*i)/(hamwinlength-1)));
|
max@1
|
310 hamwinsum += 0.54 - 0.46 * cos((2*M_PI*i)/(hamwinlength-1));
|
max@1
|
311 }
|
max@1
|
312 for (int i = 0; i < hamwinlength; ++i) hw[i] = hw[i] / hamwinsum;
|
max@1
|
313
|
max@1
|
314
|
max@1
|
315 // initialise the tuning
|
max@1
|
316 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
|
max@1
|
317 meanTunings.push_back(0);
|
max@1
|
318 localTunings.push_back(0);
|
max@1
|
319 }
|
max@1
|
320
|
max@1
|
321 blockSize = blockSize;
|
max@1
|
322 frameCount = 0;
|
max@1
|
323 int tempn = nNote * blockSize/2;
|
max@1
|
324 // cerr << "length of tempkernel : " << tempn << endl;
|
max@1
|
325 float *tempkernel;
|
max@1
|
326
|
max@1
|
327 tempkernel = new float[tempn];
|
max@1
|
328
|
max@1
|
329 logFreqMatrix(inputSampleRate, blockSize, tempkernel);
|
max@1
|
330 kernelValue.clear();
|
max@1
|
331 kernelFftIndex.clear();
|
max@1
|
332 kernelNoteIndex.clear();
|
max@1
|
333 int countNonzero = 0;
|
max@1
|
334 for (int iNote = 0; iNote < nNote; ++iNote) {
|
max@1
|
335 // I don't know if this is wise: manually making a sparse matrix
|
max@1
|
336 for (int iFFT = 0; iFFT < static_cast<int>(blockSize/2); ++iFFT) {
|
max@1
|
337 if (tempkernel[iFFT + blockSize/2 * iNote] > 0) {
|
max@1
|
338 kernelValue.push_back(tempkernel[iFFT + blockSize/2 * iNote]);
|
max@1
|
339 if (tempkernel[iFFT + blockSize/2 * iNote] > 0) {
|
max@1
|
340 countNonzero++;
|
max@1
|
341 }
|
max@1
|
342 kernelFftIndex.push_back(iFFT);
|
max@1
|
343 kernelNoteIndex.push_back(iNote);
|
max@1
|
344 }
|
max@1
|
345 }
|
max@1
|
346 }
|
max@1
|
347 delete [] tempkernel;
|
max@1
|
348 }
|
max@1
|
349 };
|
max@1
|
350
|
max@1
|
351
|
max@1
|
352 /* --------------------------------- */
|
max@1
|
353 /* ----- SONG PARTITIONER ---------- */
|
max@1
|
354 /* --------------------------------- */
|
max@1
|
355
|
max@1
|
356
|
max@1
|
357 /* --- ATTRIBUTES --- */
|
max@1
|
358
|
max@1
|
359 float SongPartitioner::m_stepSecs = 0.01161; // 512 samples at 44100
|
max@1
|
360 size_t SongPartitioner::m_chromaFramesizeFactor = 16; // 16 times as long as beat tracker's
|
max@1
|
361 size_t SongPartitioner::m_chromaStepsizeFactor = 4; // 4 times as long as beat tracker's
|
max@1
|
362
|
max@1
|
363
|
max@1
|
364 /* --- METHODS --- */
|
max@1
|
365
|
max@1
|
366 /* --- Constructor --- */
|
max@1
|
367 SongPartitioner::SongPartitioner(float inputSampleRate) :
|
max@1
|
368 Vamp::Plugin(inputSampleRate),
|
max@1
|
369 m_d(0),
|
max@1
|
370 m_bpb(4),
|
max@1
|
371 m_pluginFrameCount(0)
|
max@1
|
372 {
|
max@1
|
373 }
|
max@1
|
374
|
max@1
|
375
|
max@1
|
376 /* --- Desctructor --- */
|
max@1
|
377 SongPartitioner::~SongPartitioner()
|
max@1
|
378 {
|
max@1
|
379 delete m_d;
|
max@1
|
380 }
|
max@1
|
381
|
max@1
|
382
|
max@1
|
383 /* --- Methods --- */
|
max@1
|
384 string SongPartitioner::getIdentifier() const
|
max@1
|
385 {
|
max@1
|
386 return "qm-songpartitioner";
|
max@1
|
387 }
|
max@1
|
388
|
max@1
|
389 string SongPartitioner::getName() const
|
max@1
|
390 {
|
max@1
|
391 return "Song Partitioner";
|
max@1
|
392 }
|
max@1
|
393
|
max@1
|
394 string SongPartitioner::getDescription() const
|
max@1
|
395 {
|
max@1
|
396 return "Estimate contiguous segments pertaining to song parts such as verse and chorus.";
|
max@1
|
397 }
|
max@1
|
398
|
max@1
|
399 string SongPartitioner::getMaker() const
|
max@1
|
400 {
|
max@1
|
401 return "Queen Mary, University of London";
|
max@1
|
402 }
|
max@1
|
403
|
max@1
|
404 int SongPartitioner::getPluginVersion() const
|
max@1
|
405 {
|
max@1
|
406 return 2;
|
max@1
|
407 }
|
max@1
|
408
|
max@1
|
409 string SongPartitioner::getCopyright() const
|
max@1
|
410 {
|
max@1
|
411 return "Plugin by Matthew Davies, Christian Landone, Chris Cannam, Matthias Mauch and Massimiliano Zanoni Copyright (c) 2006-2012 QMUL - All Rights Reserved";
|
max@1
|
412 }
|
max@1
|
413
|
max@1
|
414 SongPartitioner::ParameterList SongPartitioner::getParameterDescriptors() const
|
max@1
|
415 {
|
max@1
|
416 ParameterList list;
|
max@1
|
417
|
max@1
|
418 ParameterDescriptor desc;
|
max@1
|
419
|
max@1
|
420 desc.identifier = "bpb";
|
max@1
|
421 desc.name = "Beats per Bar";
|
max@1
|
422 desc.description = "The number of beats in each bar";
|
max@1
|
423 desc.minValue = 2;
|
max@1
|
424 desc.maxValue = 16;
|
max@1
|
425 desc.defaultValue = 4;
|
max@1
|
426 desc.isQuantized = true;
|
max@1
|
427 desc.quantizeStep = 1;
|
max@1
|
428 list.push_back(desc);
|
max@1
|
429
|
max@1
|
430 return list;
|
max@1
|
431 }
|
max@1
|
432
|
max@1
|
433 float SongPartitioner::getParameter(std::string name) const
|
max@1
|
434 {
|
max@1
|
435 if (name == "bpb") return m_bpb;
|
max@1
|
436 return 0.0;
|
max@1
|
437 }
|
max@1
|
438
|
max@1
|
439 void SongPartitioner::setParameter(std::string name, float value)
|
max@1
|
440 {
|
max@1
|
441 if (name == "bpb") m_bpb = lrintf(value);
|
max@1
|
442 }
|
max@1
|
443
|
max@1
|
444
|
max@1
|
445 // Return the StepSize for Chroma Extractor
|
max@1
|
446 size_t SongPartitioner::getPreferredStepSize() const
|
max@1
|
447 {
|
max@1
|
448 size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
|
max@1
|
449 if (step < 1) step = 1;
|
max@1
|
450
|
max@1
|
451 return step;
|
max@1
|
452 }
|
max@1
|
453
|
max@1
|
454 // Return the BlockSize for Chroma Extractor
|
max@1
|
455 size_t SongPartitioner::getPreferredBlockSize() const
|
max@1
|
456 {
|
max@1
|
457 size_t theoretical = getPreferredStepSize() * 2;
|
max@1
|
458 theoretical *= m_chromaFramesizeFactor;
|
max@1
|
459
|
max@1
|
460 return theoretical;
|
max@1
|
461 }
|
max@1
|
462
|
max@1
|
463
|
max@1
|
464 // Initialize the plugin and define Beat Tracker and Chroma Extractor Objects
|
max@1
|
465 bool SongPartitioner::initialise(size_t channels, size_t stepSize, size_t blockSize)
|
max@1
|
466 {
|
max@1
|
467 if (m_d) {
|
max@1
|
468 delete m_d;
|
max@1
|
469 m_d = 0;
|
max@1
|
470 }
|
max@1
|
471
|
max@1
|
472 if (channels < getMinChannelCount() ||
|
max@1
|
473 channels > getMaxChannelCount()) {
|
max@1
|
474 std::cerr << "SongPartitioner::initialise: Unsupported channel count: "
|
max@1
|
475 << channels << std::endl;
|
max@1
|
476 return false;
|
max@1
|
477 }
|
max@1
|
478
|
max@1
|
479 if (stepSize != getPreferredStepSize()) {
|
max@1
|
480 std::cerr << "ERROR: SongPartitioner::initialise: Unsupported step size for this sample rate: "
|
max@1
|
481 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
|
max@1
|
482 return false;
|
max@1
|
483 }
|
max@1
|
484
|
max@1
|
485 if (blockSize != getPreferredBlockSize()) {
|
max@1
|
486 std::cerr << "WARNING: SongPartitioner::initialise: Sub-optimal block size for this sample rate: "
|
max@1
|
487 << blockSize << " (wanted " << getPreferredBlockSize() << ")" << std::endl;
|
max@1
|
488 }
|
max@1
|
489
|
max@1
|
490 // Beat tracker and Chroma extractor has two different configuration parameters
|
max@1
|
491
|
max@1
|
492 // Configuration Parameters for Beat Tracker
|
max@1
|
493 DFConfig dfConfig;
|
max@1
|
494 dfConfig.DFType = DF_COMPLEXSD;
|
max@1
|
495 dfConfig.stepSize = stepSize;
|
max@1
|
496 dfConfig.frameLength = blockSize / m_chromaFramesizeFactor;
|
max@1
|
497 dfConfig.dbRise = 3;
|
max@1
|
498 dfConfig.adaptiveWhitening = false;
|
max@1
|
499 dfConfig.whiteningRelaxCoeff = -1;
|
max@1
|
500 dfConfig.whiteningFloor = -1;
|
max@1
|
501
|
max@1
|
502 // Initialise Beat Tracker
|
max@1
|
503 m_d = new BeatTrackerData(m_inputSampleRate, dfConfig);
|
max@1
|
504 m_d->downBeat->setBeatsPerBar(m_bpb);
|
max@1
|
505
|
max@1
|
506 // Initialise Chroma Extractor
|
max@1
|
507 m_chromadata = new ChromaData(m_inputSampleRate, blockSize);
|
max@1
|
508 m_chromadata->initialise();
|
max@1
|
509
|
max@1
|
510 return true;
|
max@1
|
511 }
|
max@1
|
512
|
max@1
|
513 void SongPartitioner::reset()
|
max@1
|
514 {
|
max@1
|
515 if (m_d) m_d->reset();
|
max@1
|
516 m_pluginFrameCount = 0;
|
max@1
|
517 }
|
max@1
|
518
|
max@1
|
519 SongPartitioner::OutputList SongPartitioner::getOutputDescriptors() const
|
max@1
|
520 {
|
max@1
|
521 OutputList list;
|
max@1
|
522 size_t outputCounter = 0;
|
max@1
|
523
|
max@1
|
524 OutputDescriptor beat;
|
max@1
|
525 beat.identifier = "beats";
|
max@1
|
526 beat.name = "Beats";
|
max@1
|
527 beat.description = "Beat locations labelled with metrical position";
|
max@1
|
528 beat.unit = "";
|
max@1
|
529 beat.hasFixedBinCount = true;
|
max@1
|
530 beat.binCount = 0;
|
max@1
|
531 beat.sampleType = OutputDescriptor::VariableSampleRate;
|
max@1
|
532 beat.sampleRate = 1.0 / m_stepSecs;
|
max@1
|
533 m_beatOutputNumber = outputCounter++;
|
max@1
|
534
|
max@1
|
535 OutputDescriptor bars;
|
max@1
|
536 bars.identifier = "bars";
|
max@1
|
537 bars.name = "Bars";
|
max@1
|
538 bars.description = "Bar locations";
|
max@1
|
539 bars.unit = "";
|
max@1
|
540 bars.hasFixedBinCount = true;
|
max@1
|
541 bars.binCount = 0;
|
max@1
|
542 bars.sampleType = OutputDescriptor::VariableSampleRate;
|
max@1
|
543 bars.sampleRate = 1.0 / m_stepSecs;
|
max@1
|
544 m_barsOutputNumber = outputCounter++;
|
max@1
|
545
|
max@1
|
546 OutputDescriptor beatcounts;
|
max@1
|
547 beatcounts.identifier = "beatcounts";
|
max@1
|
548 beatcounts.name = "Beat Count";
|
max@1
|
549 beatcounts.description = "Beat counter function";
|
max@1
|
550 beatcounts.unit = "";
|
max@1
|
551 beatcounts.hasFixedBinCount = true;
|
max@1
|
552 beatcounts.binCount = 1;
|
max@1
|
553 beatcounts.sampleType = OutputDescriptor::VariableSampleRate;
|
max@1
|
554 beatcounts.sampleRate = 1.0 / m_stepSecs;
|
max@1
|
555 m_beatcountsOutputNumber = outputCounter++;
|
max@1
|
556
|
max@1
|
557 OutputDescriptor beatsd;
|
max@1
|
558 beatsd.identifier = "beatsd";
|
max@1
|
559 beatsd.name = "Beat Spectral Difference";
|
max@1
|
560 beatsd.description = "Beat spectral difference function used for bar-line detection";
|
max@1
|
561 beatsd.unit = "";
|
max@1
|
562 beatsd.hasFixedBinCount = true;
|
max@1
|
563 beatsd.binCount = 1;
|
max@1
|
564 beatsd.sampleType = OutputDescriptor::VariableSampleRate;
|
max@1
|
565 beatsd.sampleRate = 1.0 / m_stepSecs;
|
max@1
|
566 m_beatsdOutputNumber = outputCounter++;
|
max@1
|
567
|
max@1
|
568 OutputDescriptor logscalespec;
|
max@1
|
569 logscalespec.identifier = "logscalespec";
|
max@1
|
570 logscalespec.name = "Log-Frequency Spectrum";
|
max@1
|
571 logscalespec.description = "Spectrum with linear frequency on a log scale.";
|
max@1
|
572 logscalespec.unit = "";
|
max@1
|
573 logscalespec.hasFixedBinCount = true;
|
max@1
|
574 logscalespec.binCount = nNote;
|
max@1
|
575 logscalespec.hasKnownExtents = false;
|
max@1
|
576 logscalespec.isQuantized = false;
|
max@1
|
577 logscalespec.sampleType = OutputDescriptor::FixedSampleRate;
|
max@1
|
578 logscalespec.hasDuration = false;
|
max@1
|
579 logscalespec.sampleRate = m_inputSampleRate/2048;
|
max@1
|
580 m_logscalespecOutputNumber = outputCounter++;
|
max@1
|
581
|
max@1
|
582 OutputDescriptor bothchroma;
|
max@1
|
583 bothchroma.identifier = "bothchroma";
|
max@1
|
584 bothchroma.name = "Chromagram and Bass Chromagram";
|
max@1
|
585 bothchroma.description = "Tuning-adjusted chromagram and bass chromagram (stacked on top of each other) from NNLS approximate transcription.";
|
max@1
|
586 bothchroma.unit = "";
|
max@1
|
587 bothchroma.hasFixedBinCount = true;
|
max@1
|
588 bothchroma.binCount = 24;
|
max@1
|
589 bothchroma.hasKnownExtents = false;
|
max@1
|
590 bothchroma.isQuantized = false;
|
max@1
|
591 bothchroma.sampleType = OutputDescriptor::FixedSampleRate;
|
max@1
|
592 bothchroma.hasDuration = false;
|
max@1
|
593 bothchroma.sampleRate = m_inputSampleRate/2048;
|
max@1
|
594 m_bothchromaOutputNumber = outputCounter++;
|
max@1
|
595
|
max@1
|
596 OutputDescriptor qchromafw;
|
max@1
|
597 qchromafw.identifier = "qchromafw";
|
max@1
|
598 qchromafw.name = "Pseudo-Quantised Chromagram and Bass Chromagram";
|
max@1
|
599 qchromafw.description = "Pseudo-Quantised Chromagram and Bass Chromagram (frames between two beats are identical).";
|
max@1
|
600 qchromafw.unit = "";
|
max@1
|
601 qchromafw.hasFixedBinCount = true;
|
max@1
|
602 qchromafw.binCount = 24;
|
max@1
|
603 qchromafw.hasKnownExtents = false;
|
max@1
|
604 qchromafw.isQuantized = false;
|
max@1
|
605 qchromafw.sampleType = OutputDescriptor::FixedSampleRate;
|
max@1
|
606 qchromafw.hasDuration = false;
|
max@1
|
607 qchromafw.sampleRate = m_inputSampleRate/2048;
|
max@1
|
608 m_qchromafwOutputNumber = outputCounter++;
|
max@1
|
609
|
max@1
|
610 OutputDescriptor qchroma;
|
max@1
|
611 qchroma.identifier = "qchroma";
|
max@1
|
612 qchroma.name = "Quantised Chromagram and Bass Chromagram";
|
max@1
|
613 qchroma.description = "Quantised Chromagram and Bass Chromagram.";
|
max@1
|
614 qchroma.unit = "";
|
max@1
|
615 qchroma.hasFixedBinCount = true;
|
max@1
|
616 qchroma.binCount = 24;
|
max@1
|
617 qchroma.hasKnownExtents = false;
|
max@1
|
618 qchroma.isQuantized = false;
|
max@1
|
619 qchroma.sampleType = OutputDescriptor::FixedSampleRate;
|
max@1
|
620 qchroma.hasDuration = true;
|
max@1
|
621 m_qchromaOutputNumber = outputCounter++;
|
max@1
|
622
|
max@1
|
623 OutputDescriptor segm;
|
max@1
|
624 segm.identifier = "segm";
|
max@1
|
625 segm.name = "Segmentation";
|
max@1
|
626 segm.description = "Segmentation";
|
max@1
|
627 segm.unit = "segment-type";
|
max@1
|
628 segm.hasFixedBinCount = true;
|
max@1
|
629 //segm.binCount = 24;
|
max@1
|
630 segm.binCount = 1;
|
max@1
|
631 segm.hasKnownExtents = true;
|
max@1
|
632 segm.minValue = 1;
|
max@1
|
633 segm.maxValue = 5;
|
max@1
|
634 segm.isQuantized = true;
|
max@1
|
635 segm.quantizeStep = 1;
|
max@1
|
636 segm.sampleType = OutputDescriptor::VariableSampleRate;
|
max@1
|
637 segm.hasDuration = true;
|
max@1
|
638 m_segmOutputNumber = outputCounter++;
|
max@1
|
639
|
max@1
|
640
|
max@1
|
641 /*
|
max@1
|
642 OutputList list;
|
max@1
|
643 OutputDescriptor segmentation;
|
max@1
|
644 segmentation.identifier = "segmentation";
|
max@1
|
645 segmentation.name = "Segmentation";
|
max@1
|
646 segmentation.description = "Segmentation";
|
max@1
|
647 segmentation.unit = "segment-type";
|
max@1
|
648 segmentation.hasFixedBinCount = true;
|
max@1
|
649 segmentation.binCount = 1;
|
max@1
|
650 segmentation.hasKnownExtents = true;
|
max@1
|
651 segmentation.minValue = 1;
|
max@1
|
652 segmentation.maxValue = nSegmentTypes;
|
max@1
|
653 segmentation.isQuantized = true;
|
max@1
|
654 segmentation.quantizeStep = 1;
|
max@1
|
655 segmentation.sampleType = OutputDescriptor::VariableSampleRate;
|
max@1
|
656 segmentation.sampleRate = m_inputSampleRate / getPreferredStepSize();
|
max@1
|
657 list.push_back(segmentation);
|
max@1
|
658 return list;
|
max@1
|
659 */
|
max@1
|
660
|
max@1
|
661
|
max@1
|
662 list.push_back(beat);
|
max@1
|
663 list.push_back(bars);
|
max@1
|
664 list.push_back(beatcounts);
|
max@1
|
665 list.push_back(beatsd);
|
max@1
|
666 list.push_back(logscalespec);
|
max@1
|
667 list.push_back(bothchroma);
|
max@1
|
668 list.push_back(qchromafw);
|
max@1
|
669 list.push_back(qchroma);
|
max@1
|
670 list.push_back(segm);
|
max@1
|
671
|
max@1
|
672 return list;
|
max@1
|
673 }
|
max@1
|
674
|
max@1
|
675 // Executed for each frame - called from the host
|
max@1
|
676
|
max@1
|
677 // We use time domain input, because DownBeat requires it -- so we
|
max@1
|
678 // use the time-domain version of DetectionFunction::process which
|
max@1
|
679 // does its own FFT. It requires doubles as input, so we need to
|
max@1
|
680 // make a temporary copy
|
max@1
|
681
|
max@1
|
682 // We only support a single input channel
|
max@1
|
683 SongPartitioner::FeatureSet SongPartitioner::process(const float *const *inputBuffers,Vamp::RealTime timestamp)
|
max@1
|
684 {
|
max@1
|
685 if (!m_d) {
|
max@1
|
686 cerr << "ERROR: SongPartitioner::process: "
|
max@1
|
687 << "SongPartitioner has not been initialised"
|
max@1
|
688 << endl;
|
max@1
|
689 return FeatureSet();
|
max@1
|
690 }
|
max@1
|
691
|
max@1
|
692 const int fl = m_d->dfConfig.frameLength;
|
max@1
|
693 #ifndef __GNUC__
|
max@1
|
694 double *dfinput = (double *)alloca(fl * sizeof(double));
|
max@1
|
695 #else
|
max@1
|
696 double dfinput[fl];
|
max@1
|
697 #endif
|
max@1
|
698 int sampleOffset = ((m_chromaFramesizeFactor-1) * fl) / 2;
|
max@1
|
699
|
max@1
|
700 // Since chroma needs a much longer frame size, we only ever use the very
|
max@1
|
701 // beginning of the frame for beat tracking.
|
max@1
|
702 for (int i = 0; i < fl; ++i) dfinput[i] = inputBuffers[0][i];
|
max@1
|
703 double output = m_d->df->process(dfinput);
|
max@1
|
704
|
max@1
|
705 if (m_d->dfOutput.empty()) m_d->origin = timestamp;
|
max@1
|
706
|
max@1
|
707 // std::cerr << "df[" << m_d->dfOutput.size() << "] is " << output << std::endl;
|
max@1
|
708 m_d->dfOutput.push_back(output);
|
max@1
|
709
|
max@1
|
710 // Downsample and store the incoming audio block.
|
max@1
|
711 // We have an overlap on the incoming audio stream (step size is
|
max@1
|
712 // half block size) -- this function is configured to take only a
|
max@1
|
713 // step size's worth, so effectively ignoring the overlap. Note
|
max@1
|
714 // however that this means we omit the last blocksize - stepsize
|
max@1
|
715 // samples completely for the purposes of barline detection
|
max@1
|
716 // (hopefully not a problem)
|
max@1
|
717 m_d->downBeat->pushAudioBlock(inputBuffers[0]);
|
max@1
|
718
|
max@1
|
719 // The following is not done every time, but only every m_chromaFramesizeFactor times,
|
max@1
|
720 // because the chroma does not need dense time frames.
|
max@1
|
721
|
max@1
|
722 if (m_pluginFrameCount % m_chromaStepsizeFactor == 0)
|
max@1
|
723 {
|
max@1
|
724
|
max@1
|
725 // Window the full time domain, data, FFT it and process chroma stuff.
|
max@1
|
726
|
max@1
|
727 #ifndef __GNUC__
|
max@1
|
728 float *windowedBuffers = (float *)alloca(m_chromadata->blockSize * sizeof(float));
|
max@1
|
729 #else
|
max@1
|
730 float windowedBuffers[m_chromadata->blockSize];
|
max@1
|
731 #endif
|
max@1
|
732 m_chromadata->window.cut(&inputBuffers[0][0], &windowedBuffers[0]);
|
max@1
|
733
|
max@1
|
734 // adjust timestamp (we want the middle of the frame)
|
max@1
|
735 timestamp = timestamp + Vamp::RealTime::frame2RealTime(sampleOffset, lrintf(m_inputSampleRate));
|
max@1
|
736
|
max@1
|
737 m_chromadata->baseProcess(&windowedBuffers[0], timestamp);
|
max@1
|
738
|
max@1
|
739 }
|
max@1
|
740 m_pluginFrameCount++;
|
max@1
|
741
|
max@1
|
742 FeatureSet fs;
|
max@1
|
743 fs[m_logscalespecOutputNumber].push_back(
|
max@1
|
744 m_chromadata->logSpectrum.back());
|
max@1
|
745 return fs;
|
max@1
|
746 }
|
max@1
|
747
|
max@1
|
748 SongPartitioner::FeatureSet SongPartitioner::getRemainingFeatures()
|
max@1
|
749 {
|
max@1
|
750 if (!m_d) {
|
max@1
|
751 cerr << "ERROR: SongPartitioner::getRemainingFeatures: "
|
max@1
|
752 << "SongPartitioner has not been initialised"
|
max@1
|
753 << endl;
|
max@1
|
754 return FeatureSet();
|
max@1
|
755 }
|
max@1
|
756
|
max@1
|
757 FeatureSet masterFeatureset = BeatTrack();
|
max@1
|
758 FeatureList chromaList = ChromaFeatures();
|
max@1
|
759
|
max@1
|
760 for (size_t i = 0; i < chromaList.size(); ++i)
|
max@1
|
761 {
|
max@1
|
762 masterFeatureset[m_bothchromaOutputNumber].push_back(chromaList[i]);
|
max@1
|
763 }
|
max@1
|
764
|
max@1
|
765 // quantised and pseudo-quantised (beat-wise) chroma
|
max@1
|
766 std::vector<FeatureList> quantisedChroma = BeatQuantiser(chromaList, masterFeatureset[m_beatOutputNumber]);
|
max@1
|
767
|
max@1
|
768 masterFeatureset[m_qchromafwOutputNumber] = quantisedChroma[0];
|
max@1
|
769 masterFeatureset[m_qchromaOutputNumber] = quantisedChroma[1];
|
max@1
|
770
|
max@1
|
771 // Segmentation
|
max@1
|
772 masterFeatureset[m_segmOutputNumber] = Segmenter(quantisedChroma[1]);
|
max@1
|
773
|
max@1
|
774 return(masterFeatureset);
|
max@1
|
775 }
|
max@1
|
776
|
max@1
|
777 /* ------ Beat Tracker ------ */
|
max@1
|
778
|
max@1
|
779 SongPartitioner::FeatureSet SongPartitioner::BeatTrack()
|
max@1
|
780 {
|
max@1
|
781 vector<double> df;
|
max@1
|
782 vector<double> beatPeriod;
|
max@1
|
783 vector<double> tempi;
|
max@1
|
784
|
max@1
|
785 for (size_t i = 2; i < m_d->dfOutput.size(); ++i) { // discard first two elts
|
max@1
|
786 df.push_back(m_d->dfOutput[i]);
|
max@1
|
787 beatPeriod.push_back(0.0);
|
max@1
|
788 }
|
max@1
|
789 if (df.empty()) return FeatureSet();
|
max@1
|
790
|
max@1
|
791 TempoTrackV2 tt(m_inputSampleRate, m_d->dfConfig.stepSize);
|
max@1
|
792 tt.calculateBeatPeriod(df, beatPeriod, tempi);
|
max@1
|
793
|
max@1
|
794 vector<double> beats;
|
max@1
|
795 tt.calculateBeats(df, beatPeriod, beats);
|
max@1
|
796
|
max@1
|
797 vector<int> downbeats;
|
max@1
|
798 size_t downLength = 0;
|
max@1
|
799 const float *downsampled = m_d->downBeat->getBufferedAudio(downLength);
|
max@1
|
800 m_d->downBeat->findDownBeats(downsampled, downLength, beats, downbeats);
|
max@1
|
801
|
max@1
|
802 vector<double> beatsd;
|
max@1
|
803 m_d->downBeat->getBeatSD(beatsd);
|
max@1
|
804
|
max@1
|
805 /*std::cout << "BeatTracker: found downbeats at: ";
|
max@1
|
806 for (int i = 0; i < downbeats.size(); ++i) std::cout << downbeats[i] << " " << std::endl;*/
|
max@1
|
807
|
max@1
|
808 FeatureSet returnFeatures;
|
max@1
|
809
|
max@1
|
810 char label[20];
|
max@1
|
811
|
max@1
|
812 int dbi = 0;
|
max@1
|
813 int beat = 0;
|
max@1
|
814 int bar = 0;
|
max@1
|
815
|
max@1
|
816 if (!downbeats.empty()) {
|
max@1
|
817 // get the right number for the first beat; this will be
|
max@1
|
818 // incremented before use (at top of the following loop)
|
max@1
|
819 int firstDown = downbeats[0];
|
max@1
|
820 beat = m_bpb - firstDown - 1;
|
max@1
|
821 if (beat == m_bpb) beat = 0;
|
max@1
|
822 }
|
max@1
|
823
|
max@1
|
824 for (size_t i = 0; i < beats.size(); ++i) {
|
max@1
|
825
|
max@1
|
826 size_t frame = beats[i] * m_d->dfConfig.stepSize;
|
max@1
|
827
|
max@1
|
828 if (dbi < downbeats.size() && i == downbeats[dbi]) {
|
max@1
|
829 beat = 0;
|
max@1
|
830 ++bar;
|
max@1
|
831 ++dbi;
|
max@1
|
832 } else {
|
max@1
|
833 ++beat;
|
max@1
|
834 }
|
max@1
|
835
|
max@1
|
836 /* Ooutput Section */
|
max@1
|
837
|
max@1
|
838 // outputs are:
|
max@1
|
839 //
|
max@1
|
840 // 0 -> beats
|
max@1
|
841 // 1 -> bars
|
max@1
|
842 // 2 -> beat counter function
|
max@1
|
843
|
max@1
|
844 Feature feature;
|
max@1
|
845 feature.hasTimestamp = true;
|
max@1
|
846 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime (frame, lrintf(m_inputSampleRate));
|
max@1
|
847
|
max@1
|
848 sprintf(label, "%d", beat + 1);
|
max@1
|
849 feature.label = label;
|
max@1
|
850 returnFeatures[m_beatOutputNumber].push_back(feature); // labelled beats
|
max@1
|
851
|
max@1
|
852 feature.values.push_back(beat + 1);
|
max@1
|
853 returnFeatures[m_beatcountsOutputNumber].push_back(feature); // beat function
|
max@1
|
854
|
max@1
|
855 if (i > 0 && i <= beatsd.size()) {
|
max@1
|
856 feature.values.clear();
|
max@1
|
857 feature.values.push_back(beatsd[i-1]);
|
max@1
|
858 feature.label = "";
|
max@1
|
859 returnFeatures[m_beatsdOutputNumber].push_back(feature); // beat spectral difference
|
max@1
|
860 }
|
max@1
|
861
|
max@1
|
862 if (beat == 0) {
|
max@1
|
863 feature.values.clear();
|
max@1
|
864 sprintf(label, "%d", bar);
|
max@1
|
865 feature.label = label;
|
max@1
|
866 returnFeatures[m_barsOutputNumber].push_back(feature); // bars
|
max@1
|
867 }
|
max@1
|
868 }
|
max@1
|
869
|
max@1
|
870 return returnFeatures;
|
max@1
|
871 }
|
max@1
|
872
|
max@1
|
873
|
max@1
|
874 /* ------ Chroma Extractor ------ */
|
max@1
|
875
|
max@1
|
876 SongPartitioner::FeatureList SongPartitioner::ChromaFeatures()
|
max@1
|
877 {
|
max@1
|
878
|
max@1
|
879 FeatureList returnFeatureList;
|
max@1
|
880 FeatureList tunedlogfreqspec;
|
max@1
|
881
|
max@1
|
882 if (m_chromadata->logSpectrum.size() == 0) return returnFeatureList;
|
max@1
|
883
|
max@1
|
884 /** Calculate Tuning
|
max@1
|
885 calculate tuning from (using the angle of the complex number defined by the
|
max@1
|
886 cumulative mean real and imag values)
|
max@1
|
887 **/
|
max@1
|
888 float meanTuningImag = 0;
|
max@1
|
889 float meanTuningReal = 0;
|
max@1
|
890 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
|
max@1
|
891 meanTuningReal += m_chromadata->meanTunings[iBPS] * m_chromadata->cosvalues[iBPS];
|
max@1
|
892 meanTuningImag += m_chromadata->meanTunings[iBPS] * m_chromadata->sinvalues[iBPS];
|
max@1
|
893 }
|
max@1
|
894 float cumulativetuning = 440 * pow(2,atan2(meanTuningImag, meanTuningReal)/(24*M_PI));
|
max@1
|
895 float normalisedtuning = atan2(meanTuningImag, meanTuningReal)/(2*M_PI);
|
max@1
|
896 int intShift = floor(normalisedtuning * 3);
|
max@1
|
897 float floatShift = normalisedtuning * 3 - intShift; // floatShift is a really bad name for this
|
max@1
|
898
|
max@1
|
899 char buffer0 [50];
|
max@1
|
900
|
max@1
|
901 sprintf(buffer0, "estimated tuning: %0.1f Hz", cumulativetuning);
|
max@1
|
902
|
max@1
|
903 /** Tune Log-Frequency Spectrogram
|
max@1
|
904 calculate a tuned log-frequency spectrogram (f2): use the tuning estimated above (kinda f0) to
|
max@1
|
905 perform linear interpolation on the existing log-frequency spectrogram (kinda f1).
|
max@1
|
906 **/
|
max@1
|
907 cerr << endl << "[NNLS Chroma Plugin] Tuning Log-Frequency Spectrogram ... ";
|
max@1
|
908
|
max@1
|
909 float tempValue = 0;
|
max@1
|
910
|
max@1
|
911 int count = 0;
|
max@1
|
912
|
max@1
|
913 for (FeatureList::iterator i = m_chromadata->logSpectrum.begin(); i != m_chromadata->logSpectrum.end(); ++i)
|
max@1
|
914 {
|
max@1
|
915
|
max@1
|
916 Feature f1 = *i;
|
max@1
|
917 Feature f2; // tuned log-frequency spectrum
|
max@1
|
918
|
max@1
|
919 f2.hasTimestamp = true;
|
max@1
|
920 f2.timestamp = f1.timestamp;
|
max@1
|
921
|
max@1
|
922 f2.values.push_back(0.0);
|
max@1
|
923 f2.values.push_back(0.0); // set lower edge to zero
|
max@1
|
924
|
max@1
|
925 if (m_chromadata->tuneLocal) {
|
max@1
|
926 intShift = floor(m_chromadata->localTuning[count] * 3);
|
max@1
|
927 floatShift = m_chromadata->localTuning[count] * 3 - intShift;
|
max@1
|
928 // floatShift is a really bad name for this
|
max@1
|
929 }
|
max@1
|
930
|
max@1
|
931 for (int k = 2; k < (int)f1.values.size() - 3; ++k)
|
max@1
|
932 { // interpolate all inner bins
|
max@1
|
933 tempValue = f1.values[k + intShift] * (1-floatShift) + f1.values[k+intShift+1] * floatShift;
|
max@1
|
934 f2.values.push_back(tempValue);
|
max@1
|
935 }
|
max@1
|
936
|
max@1
|
937 f2.values.push_back(0.0);
|
max@1
|
938 f2.values.push_back(0.0);
|
max@1
|
939 f2.values.push_back(0.0); // upper edge
|
max@1
|
940
|
max@1
|
941 vector<float> runningmean = SpecialConvolution(f2.values,m_chromadata->hw);
|
max@1
|
942 vector<float> runningstd;
|
max@1
|
943 for (int i = 0; i < nNote; i++) { // first step: squared values into vector (variance)
|
max@1
|
944 runningstd.push_back((f2.values[i] - runningmean[i]) * (f2.values[i] - runningmean[i]));
|
max@1
|
945 }
|
max@1
|
946 runningstd = SpecialConvolution(runningstd,m_chromadata->hw); // second step convolve
|
max@1
|
947 for (int i = 0; i < nNote; i++)
|
max@1
|
948 {
|
max@1
|
949
|
max@1
|
950 runningstd[i] = sqrt(runningstd[i]);
|
max@1
|
951 // square root to finally have running std
|
max@1
|
952
|
max@1
|
953 if (runningstd[i] > 0)
|
max@1
|
954 {
|
max@1
|
955 f2.values[i] = (f2.values[i] - runningmean[i]) > 0 ?
|
max@1
|
956 (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_chromadata->whitening) : 0;
|
max@1
|
957 }
|
max@1
|
958
|
max@1
|
959 if (f2.values[i] < 0) {
|
max@1
|
960
|
max@1
|
961 cerr << "ERROR: negative value in logfreq spectrum" << endl;
|
max@1
|
962
|
max@1
|
963 }
|
max@1
|
964 }
|
max@1
|
965 tunedlogfreqspec.push_back(f2);
|
max@1
|
966 count++;
|
max@1
|
967 }
|
max@1
|
968 cerr << "done." << endl;
|
max@1
|
969 /** Semitone spectrum and chromagrams
|
max@1
|
970 Semitone-spaced log-frequency spectrum derived
|
max@1
|
971 from the tuned log-freq spectrum above. the spectrum
|
max@1
|
972 is inferred using a non-negative least squares algorithm.
|
max@1
|
973 Three different kinds of chromagram are calculated, "treble", "bass", and "both" (which means
|
max@1
|
974 bass and treble stacked onto each other).
|
max@1
|
975 **/
|
max@1
|
976 if (m_chromadata->useNNLS == 0) {
|
max@1
|
977 cerr << "[NNLS Chroma Plugin] Mapping to semitone spectrum and chroma ... ";
|
max@1
|
978 } else {
|
max@1
|
979 cerr << "[NNLS Chroma Plugin] Performing NNLS and mapping to chroma ... ";
|
max@1
|
980 }
|
max@1
|
981
|
max@1
|
982 vector<float> oldchroma = vector<float>(12,0);
|
max@1
|
983 vector<float> oldbasschroma = vector<float>(12,0);
|
max@1
|
984 count = 0;
|
max@1
|
985
|
max@1
|
986 for (FeatureList::iterator it = tunedlogfreqspec.begin(); it != tunedlogfreqspec.end(); ++it) {
|
max@1
|
987 Feature logfreqsp = *it; // logfreq spectrum
|
max@1
|
988 Feature bothchroma; // treble and bass chromagram
|
max@1
|
989
|
max@1
|
990 bothchroma.hasTimestamp = true;
|
max@1
|
991 bothchroma.timestamp = logfreqsp.timestamp;
|
max@1
|
992
|
max@1
|
993 float b[nNote];
|
max@1
|
994
|
max@1
|
995 bool some_b_greater_zero = false;
|
max@1
|
996 float sumb = 0;
|
max@1
|
997 for (int i = 0; i < nNote; i++) {
|
max@1
|
998 b[i] = logfreqsp.values[i];
|
max@1
|
999 sumb += b[i];
|
max@1
|
1000 if (b[i] > 0) {
|
max@1
|
1001 some_b_greater_zero = true;
|
max@1
|
1002 }
|
max@1
|
1003 }
|
max@1
|
1004
|
max@1
|
1005 // here's where the non-negative least squares algorithm calculates the note activation x
|
max@1
|
1006
|
max@1
|
1007 vector<float> chroma = vector<float>(12, 0);
|
max@1
|
1008 vector<float> basschroma = vector<float>(12, 0);
|
max@1
|
1009 float currval;
|
max@1
|
1010 int iSemitone = 0;
|
max@1
|
1011
|
max@1
|
1012 if (some_b_greater_zero) {
|
max@1
|
1013 if (m_chromadata->useNNLS == 0) {
|
max@1
|
1014 for (int iNote = nBPS/2 + 2; iNote < nNote - nBPS/2; iNote += nBPS) {
|
max@1
|
1015 currval = 0;
|
max@1
|
1016 for (int iBPS = -nBPS/2; iBPS < nBPS/2+1; ++iBPS) {
|
max@1
|
1017 currval += b[iNote + iBPS] * (1-abs(iBPS*1.0/(nBPS/2+1)));
|
max@1
|
1018 }
|
max@1
|
1019 chroma[iSemitone % 12] += currval * treblewindow[iSemitone];
|
max@1
|
1020 basschroma[iSemitone % 12] += currval * basswindow[iSemitone];
|
max@1
|
1021 iSemitone++;
|
max@1
|
1022 }
|
max@1
|
1023
|
max@1
|
1024 } else {
|
max@1
|
1025 float x[84+1000];
|
max@1
|
1026 for (int i = 1; i < 1084; ++i) x[i] = 1.0;
|
max@1
|
1027 vector<int> signifIndex;
|
max@1
|
1028 int index=0;
|
max@1
|
1029 sumb /= 84.0;
|
max@1
|
1030 for (int iNote = nBPS/2 + 2; iNote < nNote - nBPS/2; iNote += nBPS) {
|
max@1
|
1031 float currval = 0;
|
max@1
|
1032 for (int iBPS = -nBPS/2; iBPS < nBPS/2+1; ++iBPS) {
|
max@1
|
1033 currval += b[iNote + iBPS];
|
max@1
|
1034 }
|
max@1
|
1035 if (currval > 0) signifIndex.push_back(index);
|
max@1
|
1036 index++;
|
max@1
|
1037 }
|
max@1
|
1038 float rnorm;
|
max@1
|
1039 float w[84+1000];
|
max@1
|
1040 float zz[84+1000];
|
max@1
|
1041 int indx[84+1000];
|
max@1
|
1042 int mode;
|
max@1
|
1043 int dictsize = nNote*signifIndex.size();
|
max@1
|
1044
|
max@1
|
1045 float *curr_dict = new float[dictsize];
|
max@1
|
1046 for (int iNote = 0; iNote < (int)signifIndex.size(); ++iNote) {
|
max@1
|
1047 for (int iBin = 0; iBin < nNote; iBin++) {
|
max@1
|
1048 curr_dict[iNote * nNote + iBin] =
|
max@1
|
1049 1.0 * m_chromadata->dict[signifIndex[iNote] * nNote + iBin];
|
max@1
|
1050 }
|
max@1
|
1051 }
|
max@1
|
1052 nnls(curr_dict, nNote, nNote, signifIndex.size(), b, x, &rnorm, w, zz, indx, &mode);
|
max@1
|
1053 delete [] curr_dict;
|
max@1
|
1054 for (int iNote = 0; iNote < (int)signifIndex.size(); ++iNote) {
|
max@1
|
1055 // cerr << mode << endl;
|
max@1
|
1056 chroma[signifIndex[iNote] % 12] += x[iNote] * treblewindow[signifIndex[iNote]];
|
max@1
|
1057 basschroma[signifIndex[iNote] % 12] += x[iNote] * basswindow[signifIndex[iNote]];
|
max@1
|
1058 }
|
max@1
|
1059 }
|
max@1
|
1060 }
|
max@1
|
1061
|
max@1
|
1062 chroma.insert(chroma.begin(), basschroma.begin(), basschroma.end());
|
max@1
|
1063 // just stack the both chromas
|
max@1
|
1064
|
max@1
|
1065 bothchroma.values = chroma;
|
max@1
|
1066 returnFeatureList.push_back(bothchroma);
|
max@1
|
1067 count++;
|
max@1
|
1068 }
|
max@1
|
1069 cerr << "done." << endl;
|
max@1
|
1070
|
max@1
|
1071 return returnFeatureList;
|
max@1
|
1072 }
|
max@1
|
1073
|
max@1
|
1074 /* ------ Beat Quantizer ------ */
|
max@1
|
1075
|
max@4
|
1076 std::vector<Vamp::Plugin::FeatureList>
|
max@4
|
1077 SongPartitioner::BeatQuantiser(Vamp::Plugin::FeatureList chromagram, Vamp::Plugin::FeatureList beats)
|
max@1
|
1078 {
|
max@1
|
1079 std::vector<FeatureList> returnVector;
|
max@1
|
1080
|
max@1
|
1081 FeatureList fwQchromagram; // frame-wise beat-quantised chroma
|
max@1
|
1082 FeatureList bwQchromagram; // beat-wise beat-quantised chroma
|
max@1
|
1083
|
max@4
|
1084 int nChromaFrame = (int) chromagram.size();
|
max@4
|
1085 int nBeat = (int) beats.size();
|
max@1
|
1086
|
max@1
|
1087 if (nBeat == 0 && nChromaFrame == 0) return returnVector;
|
max@1
|
1088
|
max@1
|
1089 size_t nBin = chromagram[0].values.size();
|
max@1
|
1090
|
max@1
|
1091 vector<float> tempChroma = vector<float>(nBin);
|
max@1
|
1092
|
max@1
|
1093 Vamp::RealTime beatTimestamp = Vamp::RealTime::zeroTime;
|
max@1
|
1094 int currBeatCount = -1; // start before first beat
|
max@1
|
1095 int framesInBeat = 0;
|
max@1
|
1096
|
max@4
|
1097 for (int iChroma = 0; iChroma < nChromaFrame; ++iChroma)
|
max@1
|
1098 {
|
max@4
|
1099 Vamp::RealTime frameTimestamp = chromagram[iChroma].timestamp;
|
max@4
|
1100 Vamp::RealTime tempBeatTimestamp;
|
max@4
|
1101
|
max@4
|
1102 if (currBeatCount != beats.size()-1) tempBeatTimestamp = beats[currBeatCount+1].timestamp;
|
max@4
|
1103 else tempBeatTimestamp = chromagram[nChromaFrame-1].timestamp;
|
max@4
|
1104
|
max@4
|
1105 if (frameTimestamp > tempBeatTimestamp ||
|
max@1
|
1106 iChroma == nChromaFrame-1)
|
max@1
|
1107 {
|
max@1
|
1108 // new beat (or last chroma frame)
|
max@1
|
1109 // 1. finish all the old beat processing
|
max@4
|
1110 if (framesInBeat > 0)
|
max@4
|
1111 {
|
max@4
|
1112 for (int i = 0; i < nBin; ++i) tempChroma[i] /= framesInBeat; // average
|
max@4
|
1113 }
|
max@1
|
1114
|
max@1
|
1115 Feature bwQchromaFrame;
|
max@1
|
1116 bwQchromaFrame.hasTimestamp = true;
|
max@1
|
1117 bwQchromaFrame.timestamp = beatTimestamp;
|
max@1
|
1118 bwQchromaFrame.values = tempChroma;
|
max@1
|
1119 bwQchromaFrame.duration = beats[currBeatCount+1].timestamp - beats[currBeatCount].timestamp;
|
max@1
|
1120 bwQchromagram.push_back(bwQchromaFrame);
|
max@1
|
1121
|
max@1
|
1122 for (int iFrame = -framesInBeat; iFrame < 0; ++iFrame)
|
max@1
|
1123 {
|
max@1
|
1124 Feature fwQchromaFrame;
|
max@1
|
1125 fwQchromaFrame.hasTimestamp = true;
|
max@1
|
1126 fwQchromaFrame.timestamp = chromagram[iChroma+iFrame].timestamp;
|
max@1
|
1127 fwQchromaFrame.values = tempChroma; // all between two beats get the same
|
max@1
|
1128 fwQchromagram.push_back(fwQchromaFrame);
|
max@1
|
1129 }
|
max@1
|
1130
|
max@1
|
1131 // 2. increments / resets for current (new) beat
|
max@1
|
1132 currBeatCount++;
|
max@1
|
1133 beatTimestamp = beats[currBeatCount].timestamp;
|
max@1
|
1134 for (size_t i = 0; i < nBin; ++i) tempChroma[i] = 0; // average
|
max@1
|
1135 framesInBeat = 0;
|
max@1
|
1136 }
|
max@1
|
1137 framesInBeat++;
|
max@1
|
1138 for (size_t i = 0; i < nBin; ++i) tempChroma[i] += chromagram[iChroma].values[i];
|
max@1
|
1139 }
|
max@1
|
1140 returnVector.push_back(fwQchromagram);
|
max@1
|
1141 returnVector.push_back(bwQchromagram);
|
max@1
|
1142 }
|
max@1
|
1143
|
max@1
|
1144 /* -------------------------------- */
|
max@1
|
1145 /* ------ Support Functions ------ */
|
max@1
|
1146 /* -------------------------------- */
|
max@1
|
1147
|
max@1
|
1148 // one-dimesion median filter
|
max@1
|
1149 arma::vec medfilt1(arma::vec v, int medfilt_length)
|
max@1
|
1150 {
|
max@1
|
1151 int halfWin = medfilt_length/2;
|
max@1
|
1152
|
max@1
|
1153 // result vector
|
max@1
|
1154 arma::vec res = arma::zeros<arma::vec>(v.size());
|
max@1
|
1155
|
max@1
|
1156 // padding
|
max@1
|
1157 arma::vec padV = arma::zeros<arma::vec>(v.size()+medfilt_length-1);
|
max@1
|
1158
|
max@1
|
1159 for (unsigned i=medfilt_length/2; i < medfilt_length/2+v.size(); ++ i)
|
max@1
|
1160 {
|
max@1
|
1161 padV(i) = v(i-medfilt_length/2);
|
max@1
|
1162 }
|
max@1
|
1163
|
max@1
|
1164 // Median filter
|
max@1
|
1165 arma::vec win = arma::zeros<arma::vec>(medfilt_length);
|
max@1
|
1166
|
max@1
|
1167 for (unsigned i=0; i < v.size(); ++i)
|
max@1
|
1168 {
|
max@1
|
1169 win = padV.subvec(i,i+halfWin*2);
|
max@1
|
1170 win = sort(win);
|
max@1
|
1171 res(i) = win(halfWin);
|
max@1
|
1172 }
|
max@1
|
1173
|
max@1
|
1174 return res;
|
max@1
|
1175 }
|
max@1
|
1176
|
max@1
|
1177
|
max@1
|
1178 // Quantile
|
max@1
|
1179 double quantile(arma::vec v, double p)
|
max@1
|
1180 {
|
max@1
|
1181 arma::vec sortV = arma::sort(v);
|
max@1
|
1182 int n = sortV.size();
|
max@1
|
1183 arma::vec x = arma::zeros<vec>(n+2);
|
max@1
|
1184 arma::vec y = arma::zeros<vec>(n+2);
|
max@1
|
1185
|
max@1
|
1186 x(0) = 0;
|
max@1
|
1187 x(n+1) = 100;
|
max@1
|
1188
|
max@1
|
1189 for (unsigned i=1; i<n+1; ++i)
|
max@1
|
1190 x(i) = 100*(0.5+(i-1))/n;
|
max@1
|
1191
|
max@1
|
1192 y(0) = sortV(0);
|
max@1
|
1193 y.subvec(1,n) = sortV;
|
max@1
|
1194 y(n+1) = sortV(n-1);
|
max@1
|
1195
|
max@1
|
1196 arma::uvec x2index = find(x>=p*100);
|
max@1
|
1197
|
max@1
|
1198 // Interpolation
|
max@1
|
1199 double x1 = x(x2index(0)-1);
|
max@1
|
1200 double x2 = x(x2index(0));
|
max@1
|
1201 double y1 = y(x2index(0)-1);
|
max@1
|
1202 double y2 = y(x2index(0));
|
max@1
|
1203
|
max@1
|
1204 double res = (y2-y1)/(x2-x1)*(p*100-x1)+y1;
|
max@1
|
1205
|
max@1
|
1206 return res;
|
max@1
|
1207 }
|
max@1
|
1208
|
max@1
|
1209 // Max Filtering
|
max@1
|
1210 arma::mat maxfilt1(arma::mat inmat, int len)
|
max@1
|
1211 {
|
max@1
|
1212 arma::mat outmat = inmat;
|
max@1
|
1213
|
max@1
|
1214 for (int i=0; i<inmat.n_rows; ++i)
|
max@1
|
1215 {
|
max@1
|
1216 if (arma::sum(inmat.row(i)) > 0)
|
max@1
|
1217 {
|
max@1
|
1218 // Take a window of rows
|
max@1
|
1219 int startWin;
|
max@1
|
1220 int endWin;
|
max@1
|
1221
|
max@1
|
1222 if (0 > i-len)
|
max@1
|
1223 startWin = 0;
|
max@1
|
1224 else
|
max@1
|
1225 startWin = i-len;
|
max@1
|
1226
|
max@1
|
1227 if (inmat.n_rows-1 < i+len-1)
|
max@1
|
1228 endWin = inmat.n_rows-1;
|
max@1
|
1229 else
|
max@1
|
1230 endWin = i+len-1;
|
max@1
|
1231
|
max@1
|
1232 outmat(i,span::all) = arma::max(inmat(span(startWin,endWin),span::all));
|
max@1
|
1233 }
|
max@1
|
1234 }
|
max@1
|
1235
|
max@1
|
1236 return outmat;
|
max@1
|
1237
|
max@1
|
1238 }
|
max@1
|
1239
|
max@1
|
1240 // Null Parts
|
max@1
|
1241 Part nullpart(vector<Part> parts, arma::vec barline)
|
max@1
|
1242 {
|
max@1
|
1243 arma::uvec nullindices = arma::ones<arma::uvec>(barline.size());
|
max@1
|
1244 for (unsigned iPart=0; iPart<parts.size(); ++iPart)
|
max@1
|
1245 {
|
max@7
|
1246 //for (unsigned iIndex=0; iIndex < parts[0].indices.size(); ++iIndex)
|
max@7
|
1247 for (unsigned iIndex=0; iIndex < parts[iPart].indices.size(); ++iIndex)
|
max@1
|
1248 for (unsigned i=0; i<parts[iPart].n; ++i)
|
max@1
|
1249 {
|
max@1
|
1250 unsigned ind = parts[iPart].indices[iIndex]+i;
|
max@1
|
1251 nullindices(ind) = 0;
|
max@1
|
1252 }
|
max@1
|
1253 }
|
max@7
|
1254
|
max@1
|
1255 Part newPart;
|
max@1
|
1256 newPart.n = 1;
|
max@1
|
1257 uvec q = find(nullindices > 0);
|
max@1
|
1258
|
max@1
|
1259 for (unsigned i=0; i<q.size();++i)
|
max@1
|
1260 newPart.indices.push_back(q(i));
|
max@7
|
1261
|
max@1
|
1262 newPart.letter = '-';
|
max@1
|
1263 newPart.value = 0;
|
max@1
|
1264 newPart.level = 0;
|
max@1
|
1265
|
max@1
|
1266 return newPart;
|
max@1
|
1267 }
|
max@1
|
1268
|
max@1
|
1269
|
max@1
|
1270 // Merge Nulls
|
max@1
|
1271 void mergenulls(vector<Part> &parts)
|
max@1
|
1272 {
|
max@1
|
1273 for (unsigned iPart=0; iPart<parts.size(); ++iPart)
|
max@1
|
1274 {
|
max@1
|
1275
|
max@1
|
1276 vector<Part> newVectorPart;
|
max@1
|
1277
|
max@1
|
1278 if (parts[iPart].letter.compare("-")==0)
|
max@1
|
1279 {
|
max@1
|
1280 sort (parts[iPart].indices.begin(), parts[iPart].indices.end());
|
max@1
|
1281 unsigned newpartind = -1;
|
max@1
|
1282
|
max@1
|
1283 vector<int> indices;
|
max@1
|
1284 indices.push_back(-2);
|
max@1
|
1285
|
max@1
|
1286 for (unsigned iIndex=0; iIndex<parts[iPart].indices.size(); ++iIndex)
|
max@1
|
1287 indices.push_back(parts[iPart].indices[iIndex]);
|
max@1
|
1288
|
max@1
|
1289 for (unsigned iInd=1; iInd < indices.size(); ++iInd)
|
max@1
|
1290 {
|
max@1
|
1291 if (indices[iInd] - indices[iInd-1] > 1)
|
max@1
|
1292 {
|
max@1
|
1293 newpartind++;
|
max@1
|
1294
|
max@1
|
1295 Part newPart;
|
max@1
|
1296 newPart.letter = 'n';
|
max@1
|
1297 std::stringstream out;
|
max@1
|
1298 out << newpartind+1;
|
max@1
|
1299 newPart.letter.append(out.str());
|
max@1
|
1300 newPart.value = 20+newpartind+1;
|
max@1
|
1301 newPart.n = 1;
|
max@1
|
1302 newPart.indices.push_back(indices[iInd]);
|
max@1
|
1303 newPart.level = 0;
|
max@1
|
1304
|
max@1
|
1305 newVectorPart.push_back(newPart);
|
max@1
|
1306 }
|
max@1
|
1307 else
|
max@1
|
1308 {
|
max@1
|
1309 newVectorPart[newpartind].n = newVectorPart[newpartind].n+1;
|
max@1
|
1310 }
|
max@1
|
1311 }
|
max@1
|
1312 parts.erase (parts.end());
|
max@1
|
1313
|
max@1
|
1314 for (unsigned i=0; i<newVectorPart.size(); ++i)
|
max@1
|
1315 parts.push_back(newVectorPart[i]);
|
max@1
|
1316 }
|
max@1
|
1317 }
|
max@1
|
1318 }
|
max@1
|
1319
|
max@1
|
1320 /* ------ Segmentation ------ */
|
max@1
|
1321
|
max@1
|
1322 vector<Part> songSegment(Vamp::Plugin::FeatureList quatisedChromagram)
|
max@1
|
1323 {
|
max@1
|
1324
|
max@1
|
1325
|
max@1
|
1326 /* ------ Parameters ------ */
|
max@1
|
1327 double thresh_beat = 0.85;
|
max@1
|
1328 double thresh_seg = 0.80;
|
max@1
|
1329 int medfilt_length = 5;
|
max@1
|
1330 int minlength = 28;
|
max@1
|
1331 int maxlength = 128;
|
max@1
|
1332 double quantilePerc = 0.1;
|
max@1
|
1333 /* ------------------------ */
|
max@1
|
1334
|
max@1
|
1335
|
max@1
|
1336 // Collect Info
|
max@1
|
1337 int nBeat = quatisedChromagram.size(); // Number of feature vector
|
max@1
|
1338 int nFeatValues = quatisedChromagram[0].values.size(); // Number of values for each feature vector
|
max@1
|
1339
|
max@1
|
1340 arma::irowvec timeStamp = arma::zeros<arma::imat>(1,nBeat); // Vector of Time Stamps
|
max@1
|
1341
|
max@1
|
1342 // Save time stamp as a Vector
|
max@1
|
1343 if (quatisedChromagram[0].hasTimestamp)
|
max@1
|
1344 {
|
max@1
|
1345 for (unsigned i = 0; i < nBeat; ++ i)
|
max@1
|
1346 timeStamp[i] = quatisedChromagram[i].timestamp.nsec;
|
max@1
|
1347 }
|
max@1
|
1348
|
max@1
|
1349
|
max@1
|
1350 // Build a ObservationTOFeatures Matrix
|
max@1
|
1351 arma::mat featVal = arma::zeros<mat>(nBeat,nFeatValues/2);
|
max@1
|
1352
|
max@1
|
1353 for (unsigned i = 0; i < nBeat; ++ i)
|
max@1
|
1354 for (unsigned j = 0; j < nFeatValues/2; ++ j)
|
max@1
|
1355 {
|
max@1
|
1356 featVal(i,j) = (quatisedChromagram[i].values[j]+quatisedChromagram[i].values[j+12]) * 0.8;
|
max@1
|
1357 }
|
max@1
|
1358
|
max@1
|
1359 // Set to arbitrary value to feature vectors with low std
|
max@1
|
1360 arma::mat a = stddev(featVal,1,1);
|
max@1
|
1361
|
max@1
|
1362 // Feature Colleration Matrix
|
max@1
|
1363 arma::mat simmat0 = 1-arma::cor(arma::trans(featVal));
|
max@1
|
1364
|
max@1
|
1365
|
max@1
|
1366 for (unsigned i = 0; i < nBeat; ++ i)
|
max@1
|
1367 {
|
max@1
|
1368 if (a(i)<0.000001)
|
max@1
|
1369 {
|
max@1
|
1370 featVal(i,1) = 1000; // arbitrary
|
max@1
|
1371
|
max@1
|
1372 for (unsigned j = 0; j < nFeatValues/2; ++j)
|
max@1
|
1373 {
|
max@1
|
1374 simmat0(i,j) = 1;
|
max@1
|
1375 simmat0(j,i) = 1;
|
max@1
|
1376 }
|
max@1
|
1377 }
|
max@1
|
1378 }
|
max@1
|
1379
|
max@1
|
1380 arma::mat simmat = 1-simmat0/2;
|
max@1
|
1381
|
max@1
|
1382 // -------- To delate when the proble with the add of beat will be solved -------
|
max@1
|
1383 for (unsigned i = 0; i < nBeat; ++ i)
|
max@1
|
1384 for (unsigned j = 0; j < nBeat; ++ j)
|
max@1
|
1385 if (!std::isfinite(simmat(i,j)))
|
max@1
|
1386 simmat(i,j)=0;
|
max@1
|
1387 // ------------------------------------------------------------------------------
|
max@1
|
1388
|
max@1
|
1389 // Median Filtering applied to the Correlation Matrix
|
max@1
|
1390 // The median filter is for each diagonal of the Matrix
|
max@1
|
1391 arma::mat median_simmat = arma::zeros<arma::mat>(nBeat,nBeat);
|
max@1
|
1392
|
max@1
|
1393 for (unsigned i = 0; i < nBeat; ++ i)
|
max@1
|
1394 {
|
max@1
|
1395 arma::vec temp = medfilt1(simmat.diag(i),medfilt_length);
|
max@1
|
1396 median_simmat.diag(i) = temp;
|
max@1
|
1397 median_simmat.diag(-i) = temp;
|
max@1
|
1398 }
|
max@1
|
1399
|
max@1
|
1400 for (unsigned i = 0; i < nBeat; ++ i)
|
max@1
|
1401 for (unsigned j = 0; j < nBeat; ++ j)
|
max@1
|
1402 if (!std::isfinite(median_simmat(i,j)))
|
max@1
|
1403 median_simmat(i,j) = 0;
|
max@1
|
1404
|
max@1
|
1405 // -------------- NOT CONVERTED -------------------------------------
|
max@1
|
1406 // if param.seg.standardise
|
max@1
|
1407 // med_median_simmat = repmat(median(median_simmat),nBeat,1);
|
max@1
|
1408 // std_median_simmat = repmat(std(median_simmat),nBeat,1);
|
max@1
|
1409 // median_simmat = (median_simmat - med_median_simmat) ./ std_median_simmat;
|
max@1
|
1410 // end
|
max@1
|
1411 // --------------------------------------------------------
|
max@1
|
1412
|
max@1
|
1413 // Retrieve Bar Bounderies
|
max@1
|
1414 arma::uvec dup = find(median_simmat > thresh_beat);
|
max@1
|
1415 arma::mat potential_duplicates = arma::zeros<arma::mat>(nBeat,nBeat);
|
max@1
|
1416 potential_duplicates.elem(dup) = arma::ones<arma::vec>(dup.size());
|
max@1
|
1417 potential_duplicates = trimatu(potential_duplicates);
|
max@1
|
1418
|
max@1
|
1419 unsigned nPartlengths = round((maxlength-minlength)/4)+1;
|
max@1
|
1420 arma::vec partlengths = zeros<arma::vec>(nPartlengths);
|
max@1
|
1421
|
max@1
|
1422 for (unsigned i = 0; i < nPartlengths; ++ i)
|
max@1
|
1423 partlengths(i) = (i*4)+ minlength;
|
max@1
|
1424
|
max@1
|
1425 // initialise arrays
|
max@1
|
1426 arma::cube simArray = zeros<arma::cube>(nBeat,nBeat,nPartlengths);
|
max@1
|
1427 arma::cube decisionArray2 = zeros<arma::cube>(nBeat,nBeat,nPartlengths);
|
max@1
|
1428
|
max@1
|
1429 int conta = 0;
|
max@1
|
1430
|
max@1
|
1431 //for (unsigned iLength = 0; iLength < nPartlengths; ++ iLength)
|
max@1
|
1432 for (unsigned iLength = 0; iLength < 20; ++ iLength)
|
max@1
|
1433 {
|
max@1
|
1434 unsigned len = partlengths(iLength);
|
max@1
|
1435 unsigned nUsedBeat = nBeat - len + 1; // number of potential rep beginnings: they can't overlap at the end of the song
|
max@1
|
1436
|
max@1
|
1437 for (unsigned iBeat = 0; iBeat < nUsedBeat; ++ iBeat) // looping over all columns (arbitrarily chosen columns)
|
max@1
|
1438 {
|
max@1
|
1439 arma::uvec help2 = find(potential_duplicates(span(0,nUsedBeat-1),iBeat)==1);
|
max@1
|
1440
|
max@1
|
1441 for (unsigned i=0; i<help2.size(); ++i)
|
max@1
|
1442 {
|
max@1
|
1443
|
max@1
|
1444 // measure how well two length len segments go together
|
max@1
|
1445 int kBeat = help2(i);
|
max@1
|
1446 arma::vec distrib = median_simmat(span(iBeat,iBeat+len-1),span(kBeat,kBeat+len-1)).diag(0);
|
max@1
|
1447 simArray(iBeat,kBeat,iLength) = quantile(distrib,quantilePerc);
|
max@1
|
1448 }
|
max@1
|
1449 }
|
max@1
|
1450
|
max@1
|
1451 arma::mat tempM = simArray(span(0,nUsedBeat-1),span(0,nUsedBeat-1),span(iLength,iLength));
|
max@1
|
1452 simArray.slice(iLength)(span(0,nUsedBeat-1),span(0,nUsedBeat-1)) = tempM + arma::trans(tempM) - (eye<mat>(nUsedBeat,nUsedBeat)%tempM);
|
max@1
|
1453
|
max@1
|
1454 // convolution
|
max@1
|
1455 arma::vec K = arma::zeros<vec>(3);
|
max@1
|
1456 K << 0.01 << 0.98 << 0.01;
|
max@1
|
1457
|
max@1
|
1458
|
max@1
|
1459 for (unsigned i=0; i<simArray.n_rows; ++i)
|
max@1
|
1460 {
|
max@1
|
1461 arma::rowvec t = arma::conv((arma::rowvec)simArray.slice(iLength).row(i),K);
|
max@1
|
1462 simArray.slice(iLength)(i,span::all) = t.subvec(1,t.size()-2);
|
max@1
|
1463 }
|
max@1
|
1464
|
max@1
|
1465 // take only over-average bars that do not overlap
|
max@1
|
1466
|
max@1
|
1467 arma::mat temp = arma::zeros<mat>(simArray.n_rows, simArray.n_cols);
|
max@1
|
1468 temp(span::all, span(0,nUsedBeat-1)) = simArray.slice(iLength)(span::all,span(0,nUsedBeat-1));
|
max@1
|
1469
|
max@1
|
1470 for (unsigned i=0; i<temp.n_rows; ++i)
|
max@1
|
1471 for (unsigned j=0; j<nUsedBeat; ++j)
|
max@1
|
1472 if (temp(i,j) < thresh_seg)
|
max@1
|
1473 temp(i,j) = 0;
|
max@1
|
1474
|
max@1
|
1475 decisionArray2.slice(iLength) = temp;
|
max@1
|
1476
|
max@1
|
1477 arma::mat maxMat = maxfilt1(decisionArray2.slice(iLength),len-1);
|
max@1
|
1478
|
max@1
|
1479 for (unsigned i=0; i<decisionArray2.n_rows; ++i)
|
max@1
|
1480 for (unsigned j=0; j<decisionArray2.n_cols; ++j)
|
max@1
|
1481 if (decisionArray2.slice(iLength)(i,j) < maxMat(i,j))
|
max@1
|
1482 decisionArray2.slice(iLength)(i,j) = 0;
|
max@1
|
1483
|
max@1
|
1484 decisionArray2.slice(iLength) = decisionArray2.slice(iLength) % arma::trans(decisionArray2.slice(iLength));
|
max@1
|
1485
|
max@1
|
1486 for (unsigned i=0; i<simArray.n_rows; ++i)
|
max@1
|
1487 for (unsigned j=0; j<simArray.n_cols; ++j)
|
max@1
|
1488 if (simArray.slice(iLength)(i,j) < thresh_seg)
|
max@1
|
1489 potential_duplicates(i,j) = 0;
|
max@1
|
1490 }
|
max@1
|
1491
|
max@1
|
1492 // Milk the data
|
max@1
|
1493
|
max@1
|
1494 arma::mat bestval;
|
max@1
|
1495
|
max@1
|
1496 for (unsigned iLength=0; iLength<nPartlengths; ++iLength)
|
max@1
|
1497 {
|
max@1
|
1498 arma::mat temp = arma::zeros<arma::mat>(decisionArray2.n_rows,decisionArray2.n_cols);
|
max@1
|
1499
|
max@1
|
1500 for (unsigned rows=0; rows<decisionArray2.n_rows; ++rows)
|
max@1
|
1501 for (unsigned cols=0; cols<decisionArray2.n_cols; ++cols)
|
max@1
|
1502 if (decisionArray2.slice(iLength)(rows,cols) > 0)
|
max@1
|
1503 temp(rows,cols) = 1;
|
max@1
|
1504
|
max@1
|
1505 arma::vec currLogicSum = arma::sum(temp,1);
|
max@1
|
1506
|
max@1
|
1507 for (unsigned iBeat=0; iBeat<nBeat; ++iBeat)
|
max@1
|
1508 if (currLogicSum(iBeat) > 1)
|
max@1
|
1509 {
|
max@1
|
1510 arma::vec t = decisionArray2.slice(iLength)(span::all,iBeat);
|
max@1
|
1511 double currSum = sum(t);
|
max@1
|
1512
|
max@1
|
1513 unsigned count = 0;
|
max@1
|
1514 for (unsigned i=0; i<t.size(); ++i)
|
max@1
|
1515 if (t(i)>0)
|
max@1
|
1516 count++;
|
max@1
|
1517
|
max@1
|
1518 currSum = (currSum/count)/2;
|
max@1
|
1519
|
max@1
|
1520 arma::rowvec t1;
|
max@1
|
1521 t1 << (currLogicSum(iBeat)-1) * partlengths(iLength) << currSum << iLength << iBeat << currLogicSum(iBeat);
|
max@1
|
1522
|
max@1
|
1523 bestval = join_cols(bestval,t1);
|
max@1
|
1524 }
|
max@1
|
1525 }
|
max@1
|
1526
|
max@1
|
1527 // Definition of the resulting vector
|
max@1
|
1528 vector<Part> parts;
|
max@1
|
1529
|
max@1
|
1530 // make a table of all valid sets of parts
|
max@1
|
1531
|
max@1
|
1532 char partletters[] = {'A','B','C','D','E','F','G', 'H','I','J','K','L','M','N','O','P','Q','R','S'};
|
max@1
|
1533 unsigned partvalues[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19};
|
max@1
|
1534 arma::vec valid_sets = arma::ones<arma::vec>(bestval.n_rows);
|
max@1
|
1535
|
max@1
|
1536 if (!bestval.is_empty())
|
max@1
|
1537 {
|
max@1
|
1538
|
max@1
|
1539 // In questo punto viene introdotto un errore alla 3 cifra decimale
|
max@1
|
1540
|
max@1
|
1541 arma::colvec t = arma::zeros<arma::colvec>(bestval.n_rows);
|
max@1
|
1542 for (unsigned i=0; i<bestval.n_rows; ++i)
|
max@1
|
1543 {
|
max@1
|
1544 t(i) = bestval(i,1)*2;
|
max@1
|
1545 }
|
max@1
|
1546
|
max@1
|
1547 double m = t.max();
|
max@1
|
1548
|
max@1
|
1549 bestval(span::all,1) = bestval(span::all,1) / m;
|
max@1
|
1550 bestval(span::all,0) = bestval(span::all,0) + bestval(span::all,1);
|
max@1
|
1551
|
max@1
|
1552 arma::mat bestval2;
|
max@1
|
1553 for (unsigned i=0; i<bestval.n_cols; ++i)
|
max@1
|
1554 if (i!=1)
|
max@1
|
1555 bestval2 = join_rows(bestval2,bestval.col(i));
|
max@1
|
1556
|
max@6
|
1557 for (unsigned kSeg=0; kSeg<6; ++kSeg)
|
max@1
|
1558 {
|
max@1
|
1559 arma::mat currbestvals = arma::zeros<arma::mat>(bestval2.n_rows, bestval2.n_cols);
|
max@1
|
1560 for (unsigned i=0; i<bestval2.n_rows; ++i)
|
max@1
|
1561 for (unsigned j=0; j<bestval2.n_cols; ++j)
|
max@1
|
1562 if (valid_sets(i))
|
max@1
|
1563 currbestvals(i,j) = bestval2(i,j);
|
max@1
|
1564
|
max@1
|
1565 arma::vec t1 = currbestvals.col(0);
|
max@1
|
1566 double ma;
|
max@1
|
1567 uword maIdx;
|
max@1
|
1568 ma = t1.max(maIdx);
|
max@6
|
1569
|
max@6
|
1570 if ((maIdx == 0)&&(ma == 0))
|
max@6
|
1571 break;
|
max@1
|
1572
|
max@1
|
1573 double bestLength = partlengths(currbestvals(maIdx,1));
|
max@1
|
1574 arma::rowvec bestIndices = decisionArray2.slice(currbestvals(maIdx,1))(currbestvals(maIdx,2),span::all);
|
max@1
|
1575
|
max@1
|
1576 arma::rowvec bestIndicesMap = arma::zeros<arma::rowvec>(bestIndices.size());
|
max@1
|
1577 for (unsigned i=0; i<bestIndices.size(); ++i)
|
max@1
|
1578 if (bestIndices(i)>0)
|
max@1
|
1579 bestIndicesMap(i) = 1;
|
max@1
|
1580
|
max@1
|
1581 arma::rowvec mask = arma::zeros<arma::rowvec>(bestLength*2-1);
|
max@1
|
1582 for (unsigned i=0; i<bestLength; ++i)
|
max@1
|
1583 mask(i+bestLength-1) = 1;
|
max@1
|
1584
|
max@1
|
1585 arma::rowvec t2 = arma::conv(bestIndicesMap,mask);
|
max@1
|
1586 arma::rowvec island = t2.subvec(mask.size()/2,t2.size()-1-mask.size()/2);
|
max@1
|
1587
|
max@1
|
1588 // Save results in the structure
|
max@1
|
1589 Part newPart;
|
max@1
|
1590 newPart.n = bestLength;
|
max@1
|
1591 uvec q1 = find(bestIndices > 0);
|
max@1
|
1592
|
max@1
|
1593 for (unsigned i=0; i<q1.size();++i)
|
max@1
|
1594 newPart.indices.push_back(q1(i));
|
max@1
|
1595
|
max@1
|
1596 newPart.letter = partletters[kSeg];
|
max@1
|
1597 newPart.value = partvalues[kSeg];
|
max@1
|
1598 newPart.level = kSeg+1;
|
max@1
|
1599 parts.push_back(newPart);
|
max@1
|
1600
|
max@1
|
1601 uvec q2 = find(valid_sets==1);
|
max@1
|
1602
|
max@1
|
1603 for (unsigned i=0; i<q2.size(); ++i)
|
max@1
|
1604 {
|
max@1
|
1605 unsigned iSet = q2(i);
|
max@1
|
1606 unsigned s = partlengths(bestval2(iSet,1));
|
max@1
|
1607
|
max@1
|
1608 arma::rowvec mask1 = arma::zeros<arma::rowvec>(s*2-1);
|
max@1
|
1609 for (unsigned i=0; i<s; ++i)
|
max@1
|
1610 mask1(i+s-1) = 1;
|
max@1
|
1611
|
max@1
|
1612 arma::rowvec Ind = decisionArray2.slice(bestval2(iSet,1))(bestval2(iSet,2),span::all);
|
max@1
|
1613 arma::rowvec IndMap = arma::zeros<arma::rowvec>(Ind.size());
|
max@1
|
1614 for (unsigned i=0; i<Ind.size(); ++i)
|
max@1
|
1615 if (Ind(i)>0)
|
max@1
|
1616 IndMap(i) = 2;
|
max@1
|
1617
|
max@1
|
1618 arma::rowvec t3 = arma::conv(IndMap,mask1);
|
max@6
|
1619 arma::rowvec currislands = t3.subvec(mask1.size()/2,t3.size()-1-mask1.size()/2);
|
max@1
|
1620 arma::rowvec islandsdMult = currislands%island;
|
max@6
|
1621
|
max@1
|
1622 arma::uvec islandsIndex = find(islandsdMult > 0);
|
max@1
|
1623
|
max@6
|
1624 if (islandsIndex.size() > 0)
|
max@1
|
1625 valid_sets(iSet) = 0;
|
max@1
|
1626 }
|
max@1
|
1627 }
|
max@1
|
1628 }
|
max@1
|
1629 else
|
max@1
|
1630 {
|
max@1
|
1631 Part newPart;
|
max@1
|
1632 newPart.n = nBeat;
|
max@1
|
1633 newPart.indices.push_back(1);
|
max@1
|
1634 newPart.letter = 'A';
|
max@1
|
1635 newPart.value = 1;
|
max@1
|
1636 newPart.level = 1;
|
max@1
|
1637 parts.push_back(newPart);
|
max@1
|
1638 }
|
max@6
|
1639
|
max@1
|
1640 arma::vec bar = linspace(1,nBeat,nBeat);
|
max@1
|
1641 Part np = nullpart(parts,bar);
|
max@7
|
1642
|
max@1
|
1643 parts.push_back(np);
|
max@1
|
1644
|
max@1
|
1645 // -------------- NOT CONVERTED -------------------------------------
|
max@1
|
1646 // if param.seg.editor
|
max@1
|
1647 // [pa, ta] = partarray(parts);
|
max@1
|
1648 // parts = editorssearch(pa, ta, parts);
|
max@1
|
1649 // parts = [parts, nullpart(parts,1:nBeat)];
|
max@1
|
1650 // end
|
max@1
|
1651 // ------------------------------------------------------------------
|
max@1
|
1652
|
max@1
|
1653
|
max@1
|
1654 mergenulls(parts);
|
max@1
|
1655
|
max@1
|
1656
|
max@1
|
1657 // -------------- NOT CONVERTED -------------------------------------
|
max@1
|
1658 // if param.seg.editor
|
max@1
|
1659 // [pa, ta] = partarray(parts);
|
max@1
|
1660 // parts = editorssearch(pa, ta, parts);
|
max@1
|
1661 // parts = [parts, nullpart(parts,1:nBeat)];
|
max@1
|
1662 // end
|
max@1
|
1663 // ------------------------------------------------------------------
|
max@1
|
1664
|
max@1
|
1665 return parts;
|
max@1
|
1666 }
|
max@1
|
1667
|
max@1
|
1668
|
max@1
|
1669
|
max@1
|
1670 void songSegmentChroma(Vamp::Plugin::FeatureList quatisedChromagram, vector<Part> &parts)
|
max@1
|
1671 {
|
max@1
|
1672 // Collect Info
|
max@1
|
1673 int nBeat = quatisedChromagram.size(); // Number of feature vector
|
max@1
|
1674 int nFeatValues = quatisedChromagram[0].values.size(); // Number of values for each feature vector
|
max@1
|
1675
|
max@1
|
1676 arma::mat synchTreble = arma::zeros<mat>(nBeat,nFeatValues/2);
|
max@1
|
1677
|
max@1
|
1678 for (unsigned i = 0; i < nBeat; ++ i)
|
max@1
|
1679 for (unsigned j = 0; j < nFeatValues/2; ++ j)
|
max@1
|
1680 {
|
max@1
|
1681 synchTreble(i,j) = quatisedChromagram[i].values[j];
|
max@1
|
1682 }
|
max@1
|
1683
|
max@1
|
1684 arma::mat synchBass = arma::zeros<mat>(nBeat,nFeatValues/2);
|
max@1
|
1685
|
max@1
|
1686 for (unsigned i = 0; i < nBeat; ++ i)
|
max@1
|
1687 for (unsigned j = 0; j < nFeatValues/2; ++ j)
|
max@1
|
1688 {
|
max@1
|
1689 synchBass(i,j) = quatisedChromagram[i].values[j+12];
|
max@1
|
1690 }
|
max@1
|
1691
|
max@1
|
1692 // Process
|
max@1
|
1693
|
max@1
|
1694 arma::mat segTreble = arma::zeros<arma::mat>(quatisedChromagram.size(),quatisedChromagram[0].values.size()/2);
|
max@1
|
1695 arma::mat segBass = arma::zeros<arma::mat>(quatisedChromagram.size(),quatisedChromagram[0].values.size()/2);
|
max@1
|
1696
|
max@1
|
1697 for (unsigned iPart=0; iPart<parts.size(); ++iPart)
|
max@1
|
1698 {
|
max@1
|
1699 parts[iPart].nInd = parts[iPart].indices.size();
|
max@1
|
1700
|
max@1
|
1701 for (unsigned kOccur=0; kOccur<parts[iPart].nInd; ++kOccur)
|
max@1
|
1702 {
|
max@1
|
1703 int kStartIndex = parts[iPart].indices[kOccur];
|
max@1
|
1704 int kEndIndex = kStartIndex + parts[iPart].n-1;
|
max@1
|
1705
|
max@1
|
1706 segTreble.rows(kStartIndex,kEndIndex) = segTreble.rows(kStartIndex,kEndIndex) + synchTreble.rows(kStartIndex,kEndIndex);
|
max@1
|
1707 segBass.rows(kStartIndex,kEndIndex) = segBass.rows(kStartIndex,kEndIndex) + synchBass.rows(kStartIndex,kEndIndex);
|
max@1
|
1708 }
|
max@1
|
1709 }
|
max@1
|
1710 }
|
max@1
|
1711
|
max@1
|
1712
|
max@1
|
1713 // Segment Integration
|
max@1
|
1714 vector<Part> songSegmentIntegration(vector<Part> &parts)
|
max@1
|
1715 {
|
max@1
|
1716 // Break up parts (every part will have one instance)
|
max@1
|
1717 vector<Part> newPartVector;
|
max@1
|
1718 vector<int> partindices;
|
max@1
|
1719
|
max@1
|
1720 for (unsigned iPart=0; iPart<parts.size(); ++iPart)
|
max@1
|
1721 {
|
max@1
|
1722 parts[iPart].nInd = parts[iPart].indices.size();
|
max@1
|
1723 for (unsigned iInstance=0; iInstance<parts[iPart].nInd; ++iInstance)
|
max@1
|
1724 {
|
max@1
|
1725 Part newPart;
|
max@1
|
1726 newPart.n = parts[iPart].n;
|
max@1
|
1727 newPart.letter = parts[iPart].letter;
|
max@1
|
1728 newPart.value = parts[iPart].value;
|
max@1
|
1729 newPart.level = parts[iPart].level;
|
max@1
|
1730 newPart.indices.push_back(parts[iPart].indices[iInstance]);
|
max@1
|
1731 newPart.nInd = 1;
|
max@1
|
1732 partindices.push_back(parts[iPart].indices[iInstance]);
|
max@1
|
1733
|
max@1
|
1734 newPartVector.push_back(newPart);
|
max@1
|
1735 }
|
max@1
|
1736 }
|
max@1
|
1737
|
max@1
|
1738
|
max@1
|
1739 // Sort the parts in order of occurrence
|
max@1
|
1740 sort (partindices.begin(), partindices.end());
|
max@1
|
1741
|
max@1
|
1742 for (unsigned i=0; i<partindices.size(); ++i)
|
max@1
|
1743 {
|
max@1
|
1744 bool found = false;
|
max@1
|
1745 int in=0;
|
max@1
|
1746 while (!found)
|
max@1
|
1747 {
|
max@1
|
1748 if (newPartVector[in].indices[0] == partindices[i])
|
max@1
|
1749 {
|
max@1
|
1750 newPartVector.push_back(newPartVector[in]);
|
max@1
|
1751 newPartVector.erase(newPartVector.begin()+in);
|
max@1
|
1752 found = true;
|
max@1
|
1753 }
|
max@1
|
1754 else
|
max@1
|
1755 in++;
|
max@1
|
1756 }
|
max@1
|
1757 }
|
max@1
|
1758
|
max@1
|
1759 // Clear the vector
|
max@1
|
1760 for (unsigned iNewpart=1; iNewpart < newPartVector.size(); ++iNewpart)
|
max@1
|
1761 {
|
max@1
|
1762 if (newPartVector[iNewpart].n < 12)
|
max@1
|
1763 {
|
max@1
|
1764 newPartVector[iNewpart-1].n = newPartVector[iNewpart-1].n + newPartVector[iNewpart].n;
|
max@1
|
1765 newPartVector.erase(newPartVector.begin()+iNewpart);
|
max@1
|
1766 }
|
max@1
|
1767 }
|
max@1
|
1768
|
max@1
|
1769 return newPartVector;
|
max@1
|
1770 }
|
max@1
|
1771
|
max@1
|
1772 // Segmenter
|
max@1
|
1773 Vamp::Plugin::FeatureList SongPartitioner::Segmenter(Vamp::Plugin::FeatureList quatisedChromagram)
|
max@1
|
1774 {
|
max@1
|
1775 /* --- Display Information --- */
|
max@1
|
1776 int numBeat = quatisedChromagram.size();
|
max@1
|
1777 int numFeats = quatisedChromagram[0].values.size();
|
max@1
|
1778
|
max@1
|
1779 vector<Part> parts;
|
max@1
|
1780 vector<Part> finalParts;
|
max@1
|
1781
|
max@1
|
1782 parts = songSegment(quatisedChromagram);
|
max@1
|
1783 songSegmentChroma(quatisedChromagram,parts);
|
max@7
|
1784
|
max@1
|
1785 finalParts = songSegmentIntegration(parts);
|
max@1
|
1786
|
max@1
|
1787
|
max@1
|
1788 // TEMP ----
|
max@6
|
1789 /*for (unsigned i=0;i<finalParts.size(); ++i)
|
max@1
|
1790 {
|
max@6
|
1791 std::cout << "Parts n° " << i << std::endl;
|
max@6
|
1792 std::cout << "n°: " << finalParts[i].n << std::endl;
|
max@6
|
1793 std::cout << "letter: " << finalParts[i].letter << std::endl;
|
max@1
|
1794
|
max@6
|
1795 std::cout << "indices: ";
|
max@6
|
1796 for (unsigned j=0;j<finalParts[i].indices.size(); ++j)
|
max@6
|
1797 std::cout << finalParts[i].indices[j] << " ";
|
max@6
|
1798
|
max@6
|
1799 std::cout << std::endl;
|
max@6
|
1800 std::cout << "level: " << finalParts[i].level << std::endl;
|
max@1
|
1801 }*/
|
max@1
|
1802
|
max@1
|
1803 // ---------
|
max@1
|
1804
|
max@1
|
1805
|
max@1
|
1806 // Output
|
max@1
|
1807
|
max@1
|
1808 Vamp::Plugin::FeatureList results;
|
max@1
|
1809
|
max@1
|
1810
|
max@1
|
1811 Feature seg;
|
max@1
|
1812
|
max@1
|
1813 arma::vec indices;
|
max@1
|
1814 unsigned idx=0;
|
max@1
|
1815 vector<int> values;
|
max@1
|
1816 vector<string> letters;
|
max@1
|
1817
|
max@1
|
1818 for (unsigned iPart=0; iPart<finalParts.size()-1; ++iPart)
|
max@1
|
1819 {
|
max@1
|
1820 unsigned iInstance=0;
|
max@1
|
1821 seg.hasTimestamp = true;
|
max@1
|
1822
|
max@1
|
1823 int ind = finalParts[iPart].indices[iInstance];
|
max@1
|
1824 int ind1 = finalParts[iPart+1].indices[iInstance];
|
max@1
|
1825
|
max@1
|
1826 seg.timestamp = quatisedChromagram[ind].timestamp;
|
max@1
|
1827 seg.hasDuration = true;
|
max@1
|
1828 seg.duration = quatisedChromagram[ind1].timestamp-quatisedChromagram[ind].timestamp;
|
max@1
|
1829 seg.values.clear();
|
max@1
|
1830 seg.values.push_back(finalParts[iPart].value);
|
max@1
|
1831 seg.label = finalParts[iPart].letter;
|
max@1
|
1832
|
max@1
|
1833 results.push_back(seg);
|
max@1
|
1834 }
|
max@1
|
1835
|
max@1
|
1836 int ind = finalParts[finalParts.size()-1].indices[0];
|
max@1
|
1837 seg.timestamp = quatisedChromagram[ind].timestamp;
|
max@1
|
1838 seg.hasDuration = true;
|
max@1
|
1839 seg.duration = quatisedChromagram[quatisedChromagram.size()-1].timestamp-quatisedChromagram[ind].timestamp;
|
max@1
|
1840 seg.values.clear();
|
max@1
|
1841 seg.values.push_back(finalParts[finalParts.size()-1].value);
|
max@1
|
1842 seg.label = finalParts[finalParts.size()-1].letter;
|
max@1
|
1843
|
max@1
|
1844 results.push_back(seg);
|
max@1
|
1845
|
max@1
|
1846 return results;
|
max@1
|
1847 }
|
max@1
|
1848
|
max@1
|
1849
|
max@1
|
1850
|
max@1
|
1851
|
max@1
|
1852
|
max@1
|
1853
|
max@1
|
1854
|
max@1
|
1855
|
max@1
|
1856
|
max@1
|
1857
|
max@1
|
1858
|
max@1
|
1859
|
max@1
|
1860
|
max@1
|
1861
|
max@1
|
1862
|
max@1
|
1863
|
max@1
|
1864
|