annotate songparts/plugins/SongParts.cpp @ 8:ccfdf972c04b

Compiled and built using -mmacosx-version-min=10.5
author maxzanoni76 <max.zanoni@eecs.qmul.ac.uk>
date Fri, 13 Apr 2012 00:54:18 +0100
parents 6d32e730e34b
children
rev   line source
max@1 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
max@1 2
max@1 3 /*
max@1 4 QM Vamp Plugin Set
max@1 5
max@1 6 Centre for Digital Music, Queen Mary, University of London.
max@1 7
max@1 8 This program is free software; you can redistribute it and/or
max@1 9 modify it under the terms of the GNU General Public License as
max@1 10 published by the Free Software Foundation; either version 2 of the
max@1 11 License, or (at your option) any later version. See the file
max@1 12 COPYING included with this distribution for more information.
max@1 13 */
max@1 14
max@1 15 #include "SongParts.h"
max@1 16
max@1 17 #include <base/Window.h>
max@1 18 #include <dsp/onsets/DetectionFunction.h>
max@1 19 #include <dsp/onsets/PeakPicking.h>
max@1 20 #include <dsp/transforms/FFT.h>
max@1 21 #include <dsp/tempotracking/TempoTrackV2.h>
max@1 22 #include <dsp/tempotracking/DownBeat.h>
max@1 23 #include <chromamethods.h>
max@1 24 #include <maths/MathUtilities.h>
max@1 25 #include <boost/numeric/ublas/matrix.hpp>
max@1 26 #include <boost/numeric/ublas/io.hpp>
max@1 27 #include <boost/math/distributions/normal.hpp>
max@1 28 #include "armadillo"
max@1 29 #include <fstream>
max@1 30 #include <sstream>
max@1 31 #include <cmath>
max@1 32 #include <vector>
max@1 33
max@1 34 #include <vamp-sdk/Plugin.h>
max@1 35
max@1 36 using namespace boost::numeric;
max@1 37 using namespace arma;
max@1 38 using std::string;
max@1 39 using std::vector;
max@1 40 using std::cerr;
max@1 41 using std::cout;
max@1 42 using std::endl;
max@1 43
max@1 44
max@1 45 #ifndef __GNUC__
max@1 46 #include <alloca.h>
max@1 47 #endif
max@1 48
max@1 49
max@1 50 // Result Struct
max@1 51 typedef struct Part {
max@1 52 int n;
max@1 53 vector<unsigned> indices;
max@1 54 string letter;
max@1 55 unsigned value;
max@1 56 int level;
max@1 57 int nInd;
max@1 58 }Part;
max@1 59
max@1 60
max@8 61
max@1 62 /* ------------------------------------ */
max@1 63 /* ----- BEAT DETECTOR CLASS ---------- */
max@1 64 /* ------------------------------------ */
max@1 65
max@1 66 class BeatTrackerData
max@1 67 {
max@1 68 /* --- ATTRIBUTES --- */
max@1 69 public:
max@1 70 DFConfig dfConfig;
max@1 71 DetectionFunction *df;
max@1 72 DownBeat *downBeat;
max@1 73 vector<double> dfOutput;
max@1 74 Vamp::RealTime origin;
max@1 75
max@1 76
max@1 77 /* --- METHODS --- */
max@1 78
max@1 79 /* --- Constructor --- */
max@1 80 public:
max@1 81 BeatTrackerData(float rate, const DFConfig &config) : dfConfig(config) {
max@1 82
max@1 83 df = new DetectionFunction(config);
max@1 84 // decimation factor aims at resampling to c. 3KHz; must be power of 2
max@1 85 int factor = MathUtilities::nextPowerOfTwo(rate / 3000);
max@1 86 // std::cerr << "BeatTrackerData: factor = " << factor << std::endl;
max@1 87 downBeat = new DownBeat(rate, factor, config.stepSize);
max@1 88 }
max@1 89
max@1 90 /* --- Desctructor --- */
max@1 91 ~BeatTrackerData() {
max@1 92 delete df;
max@1 93 delete downBeat;
max@1 94 }
max@1 95
max@1 96 void reset() {
max@1 97 delete df;
max@1 98 df = new DetectionFunction(dfConfig);
max@1 99 dfOutput.clear();
max@1 100 downBeat->resetAudioBuffer();
max@1 101 origin = Vamp::RealTime::zeroTime;
max@1 102 }
max@1 103 };
max@1 104
max@1 105
max@1 106 /* --------------------------------------- */
max@1 107 /* ----- CHROMA EXTRACTOR CLASS ---------- */
max@1 108 /* --------------------------------------- */
max@1 109
max@1 110 class ChromaData
max@1 111 {
max@1 112
max@1 113 /* --- ATTRIBUTES --- */
max@1 114
max@1 115 public:
max@1 116 int frameCount;
max@1 117 int nBPS;
max@1 118 Vamp::Plugin::FeatureList logSpectrum;
max@1 119 size_t blockSize;
max@1 120 int lengthOfNoteIndex;
max@1 121 vector<float> meanTunings;
max@1 122 vector<float> localTunings;
max@1 123 float whitening;
max@1 124 float preset;
max@1 125 float useNNLS;
max@1 126 vector<float> localTuning;
max@1 127 vector<float> kernelValue;
max@1 128 vector<int> kernelFftIndex;
max@1 129 vector<int> kernelNoteIndex;
max@1 130 float *dict;
max@1 131 bool tuneLocal;
max@1 132 float doNormalizeChroma;
max@1 133 float rollon;
max@1 134 float s;
max@1 135 vector<float> hw;
max@1 136 vector<float> sinvalues;
max@1 137 vector<float> cosvalues;
max@1 138 Window<float> window;
max@1 139 FFTReal fft;
max@1 140 size_t inputSampleRate;
max@1 141
max@1 142 /* --- METHODS --- */
max@1 143
max@1 144 /* --- Constructor --- */
max@1 145
max@1 146 public:
max@1 147 ChromaData(float inputSampleRate, size_t block_size) :
max@1 148 frameCount(0),
max@1 149 nBPS(3),
max@1 150 logSpectrum(0),
max@1 151 blockSize(0),
max@1 152 lengthOfNoteIndex(0),
max@1 153 meanTunings(0),
max@1 154 localTunings(0),
max@1 155 whitening(1.0),
max@1 156 preset(0.0),
max@1 157 useNNLS(1.0),
max@1 158 localTuning(0.0),
max@1 159 kernelValue(0),
max@1 160 kernelFftIndex(0),
max@1 161 kernelNoteIndex(0),
max@1 162 dict(0),
max@1 163 tuneLocal(0.0),
max@1 164 doNormalizeChroma(0),
max@1 165 rollon(0.0),
max@1 166 s(0.7),
max@1 167 sinvalues(0),
max@1 168 cosvalues(0),
max@1 169 window(HanningWindow, block_size),
max@1 170 fft(block_size),
max@1 171 inputSampleRate(inputSampleRate)
max@1 172 {
max@1 173 // make the *note* dictionary matrix
max@1 174 dict = new float[nNote * 84];
max@1 175 for (int i = 0; i < nNote * 84; ++i) dict[i] = 0.0;
max@1 176 blockSize = block_size;
max@1 177 }
max@1 178
max@1 179
max@1 180 /* --- Desctructor --- */
max@1 181
max@1 182 ~ChromaData() {
max@1 183 delete [] dict;
max@1 184 }
max@1 185
max@1 186 /* --- Public Methods --- */
max@1 187
max@1 188 void reset() {
max@1 189 frameCount = 0;
max@1 190 logSpectrum.clear();
max@1 191 for (int iBPS = 0; iBPS < 3; ++iBPS) {
max@1 192 meanTunings[iBPS] = 0;
max@1 193 localTunings[iBPS] = 0;
max@1 194 }
max@1 195 localTuning.clear();
max@1 196 }
max@1 197
max@1 198 void baseProcess(float *inputBuffers, Vamp::RealTime timestamp)
max@1 199 {
max@1 200
max@1 201 frameCount++;
max@1 202 float *magnitude = new float[blockSize/2];
max@1 203 double *fftReal = new double[blockSize];
max@1 204 double *fftImag = new double[blockSize];
max@1 205
max@1 206 // FFTReal wants doubles, so we need to make a local copy of inputBuffers
max@1 207 double *inputBuffersDouble = new double[blockSize];
max@1 208 for (size_t i = 0; i < blockSize; i++) inputBuffersDouble[i] = inputBuffers[i];
max@1 209
max@1 210 fft.process(false, inputBuffersDouble, fftReal, fftImag);
max@1 211
max@1 212 float energysum = 0;
max@1 213 // make magnitude
max@1 214 float maxmag = -10000;
max@1 215 for (int iBin = 0; iBin < static_cast<int>(blockSize/2); iBin++) {
max@1 216 magnitude[iBin] = sqrt(fftReal[iBin] * fftReal[iBin] +
max@1 217 fftImag[iBin] * fftImag[iBin]);
max@1 218 if (magnitude[iBin]>blockSize*1.0) magnitude[iBin] = blockSize;
max@1 219 // a valid audio signal (between -1 and 1) should not be limited here.
max@1 220 if (maxmag < magnitude[iBin]) maxmag = magnitude[iBin];
max@1 221 if (rollon > 0) {
max@1 222 energysum += pow(magnitude[iBin],2);
max@1 223 }
max@1 224 }
max@1 225
max@1 226 float cumenergy = 0;
max@1 227 if (rollon > 0) {
max@1 228 for (int iBin = 2; iBin < static_cast<int>(blockSize/2); iBin++) {
max@1 229 cumenergy += pow(magnitude[iBin],2);
max@1 230 if (cumenergy < energysum * rollon / 100) magnitude[iBin-2] = 0;
max@1 231 else break;
max@1 232 }
max@1 233 }
max@1 234
max@1 235 if (maxmag < 2) {
max@1 236 // cerr << "timestamp " << timestamp << ": very low magnitude, setting magnitude to all zeros" << endl;
max@1 237 for (int iBin = 0; iBin < static_cast<int>(blockSize/2); iBin++) {
max@1 238 magnitude[iBin] = 0;
max@1 239 }
max@1 240 }
max@1 241
max@1 242 // cerr << magnitude[200] << endl;
max@1 243
max@1 244 // note magnitude mapping using pre-calculated matrix
max@1 245 float *nm = new float[nNote]; // note magnitude
max@1 246 for (int iNote = 0; iNote < nNote; iNote++) {
max@1 247 nm[iNote] = 0; // initialise as 0
max@1 248 }
max@1 249 int binCount = 0;
max@1 250 for (vector<float>::iterator it = kernelValue.begin(); it != kernelValue.end(); ++it) {
max@1 251 nm[kernelNoteIndex[binCount]] += magnitude[kernelFftIndex[binCount]] * kernelValue[binCount];
max@1 252 binCount++;
max@1 253 }
max@1 254
max@1 255 float one_over_N = 1.0/frameCount;
max@1 256 // update means of complex tuning variables
max@1 257 for (int iBPS = 0; iBPS < nBPS; ++iBPS) meanTunings[iBPS] *= float(frameCount-1)*one_over_N;
max@1 258
max@1 259 for (int iTone = 0; iTone < round(nNote*0.62/nBPS)*nBPS+1; iTone = iTone + nBPS) {
max@1 260 for (int iBPS = 0; iBPS < nBPS; ++iBPS) meanTunings[iBPS] += nm[iTone + iBPS]*one_over_N;
max@1 261 float ratioOld = 0.997;
max@1 262 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
max@1 263 localTunings[iBPS] *= ratioOld;
max@1 264 localTunings[iBPS] += nm[iTone + iBPS] * (1 - ratioOld);
max@1 265 }
max@1 266 }
max@1 267
max@1 268 float localTuningImag = 0;
max@1 269 float localTuningReal = 0;
max@1 270 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
max@1 271 localTuningReal += localTunings[iBPS] * cosvalues[iBPS];
max@1 272 localTuningImag += localTunings[iBPS] * sinvalues[iBPS];
max@1 273 }
max@1 274
max@1 275 float normalisedtuning = atan2(localTuningImag, localTuningReal)/(2*M_PI);
max@1 276 localTuning.push_back(normalisedtuning);
max@1 277
max@1 278 Vamp::Plugin::Feature f1; // logfreqspec
max@1 279 f1.hasTimestamp = true;
max@1 280 f1.timestamp = timestamp;
max@1 281 for (int iNote = 0; iNote < nNote; iNote++) {
max@1 282 f1.values.push_back(nm[iNote]);
max@1 283 }
max@1 284
max@1 285 // deletes
max@1 286 delete[] inputBuffersDouble;
max@1 287 delete[] magnitude;
max@1 288 delete[] fftReal;
max@1 289 delete[] fftImag;
max@1 290 delete[] nm;
max@1 291
max@1 292 logSpectrum.push_back(f1); // remember note magnitude
max@1 293 }
max@1 294
max@1 295 bool initialise()
max@1 296 {
max@1 297 dictionaryMatrix(dict, s);
max@1 298
max@1 299 // make things for tuning estimation
max@1 300 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
max@1 301 sinvalues.push_back(sin(2*M_PI*(iBPS*1.0/nBPS)));
max@1 302 cosvalues.push_back(cos(2*M_PI*(iBPS*1.0/nBPS)));
max@1 303 }
max@1 304
max@1 305
max@1 306 // make hamming window of length 1/2 octave
max@1 307 int hamwinlength = nBPS * 6 + 1;
max@1 308 float hamwinsum = 0;
max@1 309 for (int i = 0; i < hamwinlength; ++i) {
max@1 310 hw.push_back(0.54 - 0.46 * cos((2*M_PI*i)/(hamwinlength-1)));
max@1 311 hamwinsum += 0.54 - 0.46 * cos((2*M_PI*i)/(hamwinlength-1));
max@1 312 }
max@1 313 for (int i = 0; i < hamwinlength; ++i) hw[i] = hw[i] / hamwinsum;
max@1 314
max@1 315
max@1 316 // initialise the tuning
max@1 317 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
max@1 318 meanTunings.push_back(0);
max@1 319 localTunings.push_back(0);
max@1 320 }
max@1 321
max@1 322 blockSize = blockSize;
max@1 323 frameCount = 0;
max@1 324 int tempn = nNote * blockSize/2;
max@1 325 // cerr << "length of tempkernel : " << tempn << endl;
max@1 326 float *tempkernel;
max@1 327
max@1 328 tempkernel = new float[tempn];
max@1 329
max@1 330 logFreqMatrix(inputSampleRate, blockSize, tempkernel);
max@1 331 kernelValue.clear();
max@1 332 kernelFftIndex.clear();
max@1 333 kernelNoteIndex.clear();
max@1 334 int countNonzero = 0;
max@1 335 for (int iNote = 0; iNote < nNote; ++iNote) {
max@1 336 // I don't know if this is wise: manually making a sparse matrix
max@1 337 for (int iFFT = 0; iFFT < static_cast<int>(blockSize/2); ++iFFT) {
max@1 338 if (tempkernel[iFFT + blockSize/2 * iNote] > 0) {
max@1 339 kernelValue.push_back(tempkernel[iFFT + blockSize/2 * iNote]);
max@1 340 if (tempkernel[iFFT + blockSize/2 * iNote] > 0) {
max@1 341 countNonzero++;
max@1 342 }
max@1 343 kernelFftIndex.push_back(iFFT);
max@1 344 kernelNoteIndex.push_back(iNote);
max@1 345 }
max@1 346 }
max@1 347 }
max@1 348 delete [] tempkernel;
max@1 349 }
max@1 350 };
max@1 351
max@1 352
max@1 353 /* --------------------------------- */
max@1 354 /* ----- SONG PARTITIONER ---------- */
max@1 355 /* --------------------------------- */
max@1 356
max@1 357
max@1 358 /* --- ATTRIBUTES --- */
max@1 359
max@1 360 float SongPartitioner::m_stepSecs = 0.01161; // 512 samples at 44100
max@1 361 size_t SongPartitioner::m_chromaFramesizeFactor = 16; // 16 times as long as beat tracker's
max@1 362 size_t SongPartitioner::m_chromaStepsizeFactor = 4; // 4 times as long as beat tracker's
max@1 363
max@1 364
max@1 365 /* --- METHODS --- */
max@1 366
max@1 367 /* --- Constructor --- */
max@1 368 SongPartitioner::SongPartitioner(float inputSampleRate) :
max@1 369 Vamp::Plugin(inputSampleRate),
max@1 370 m_d(0),
max@1 371 m_bpb(4),
max@1 372 m_pluginFrameCount(0)
max@1 373 {
max@1 374 }
max@1 375
max@1 376
max@1 377 /* --- Desctructor --- */
max@1 378 SongPartitioner::~SongPartitioner()
max@1 379 {
max@1 380 delete m_d;
max@1 381 }
max@1 382
max@1 383
max@1 384 /* --- Methods --- */
max@1 385 string SongPartitioner::getIdentifier() const
max@1 386 {
max@1 387 return "qm-songpartitioner";
max@1 388 }
max@1 389
max@1 390 string SongPartitioner::getName() const
max@1 391 {
max@1 392 return "Song Partitioner";
max@1 393 }
max@1 394
max@1 395 string SongPartitioner::getDescription() const
max@1 396 {
max@1 397 return "Estimate contiguous segments pertaining to song parts such as verse and chorus.";
max@1 398 }
max@1 399
max@1 400 string SongPartitioner::getMaker() const
max@1 401 {
max@1 402 return "Queen Mary, University of London";
max@1 403 }
max@1 404
max@1 405 int SongPartitioner::getPluginVersion() const
max@1 406 {
max@1 407 return 2;
max@1 408 }
max@1 409
max@1 410 string SongPartitioner::getCopyright() const
max@1 411 {
max@1 412 return "Plugin by Matthew Davies, Christian Landone, Chris Cannam, Matthias Mauch and Massimiliano Zanoni Copyright (c) 2006-2012 QMUL - All Rights Reserved";
max@1 413 }
max@1 414
max@1 415 SongPartitioner::ParameterList SongPartitioner::getParameterDescriptors() const
max@1 416 {
max@1 417 ParameterList list;
max@1 418
max@1 419 ParameterDescriptor desc;
max@1 420
max@1 421 desc.identifier = "bpb";
max@1 422 desc.name = "Beats per Bar";
max@1 423 desc.description = "The number of beats in each bar";
max@1 424 desc.minValue = 2;
max@1 425 desc.maxValue = 16;
max@1 426 desc.defaultValue = 4;
max@1 427 desc.isQuantized = true;
max@1 428 desc.quantizeStep = 1;
max@1 429 list.push_back(desc);
max@1 430
max@1 431 return list;
max@1 432 }
max@1 433
max@1 434 float SongPartitioner::getParameter(std::string name) const
max@1 435 {
max@1 436 if (name == "bpb") return m_bpb;
max@1 437 return 0.0;
max@1 438 }
max@1 439
max@1 440 void SongPartitioner::setParameter(std::string name, float value)
max@1 441 {
max@1 442 if (name == "bpb") m_bpb = lrintf(value);
max@1 443 }
max@1 444
max@1 445
max@1 446 // Return the StepSize for Chroma Extractor
max@1 447 size_t SongPartitioner::getPreferredStepSize() const
max@1 448 {
max@1 449 size_t step = size_t(m_inputSampleRate * m_stepSecs + 0.0001);
max@1 450 if (step < 1) step = 1;
max@1 451
max@1 452 return step;
max@1 453 }
max@1 454
max@1 455 // Return the BlockSize for Chroma Extractor
max@1 456 size_t SongPartitioner::getPreferredBlockSize() const
max@1 457 {
max@1 458 size_t theoretical = getPreferredStepSize() * 2;
max@1 459 theoretical *= m_chromaFramesizeFactor;
max@1 460
max@1 461 return theoretical;
max@1 462 }
max@1 463
max@1 464
max@1 465 // Initialize the plugin and define Beat Tracker and Chroma Extractor Objects
max@1 466 bool SongPartitioner::initialise(size_t channels, size_t stepSize, size_t blockSize)
max@1 467 {
max@1 468 if (m_d) {
max@1 469 delete m_d;
max@1 470 m_d = 0;
max@1 471 }
max@1 472
max@1 473 if (channels < getMinChannelCount() ||
max@1 474 channels > getMaxChannelCount()) {
max@1 475 std::cerr << "SongPartitioner::initialise: Unsupported channel count: "
max@1 476 << channels << std::endl;
max@1 477 return false;
max@1 478 }
max@1 479
max@1 480 if (stepSize != getPreferredStepSize()) {
max@1 481 std::cerr << "ERROR: SongPartitioner::initialise: Unsupported step size for this sample rate: "
max@1 482 << stepSize << " (wanted " << (getPreferredStepSize()) << ")" << std::endl;
max@1 483 return false;
max@1 484 }
max@1 485
max@1 486 if (blockSize != getPreferredBlockSize()) {
max@1 487 std::cerr << "WARNING: SongPartitioner::initialise: Sub-optimal block size for this sample rate: "
max@1 488 << blockSize << " (wanted " << getPreferredBlockSize() << ")" << std::endl;
max@1 489 }
max@1 490
max@1 491 // Beat tracker and Chroma extractor has two different configuration parameters
max@1 492
max@1 493 // Configuration Parameters for Beat Tracker
max@1 494 DFConfig dfConfig;
max@1 495 dfConfig.DFType = DF_COMPLEXSD;
max@1 496 dfConfig.stepSize = stepSize;
max@1 497 dfConfig.frameLength = blockSize / m_chromaFramesizeFactor;
max@1 498 dfConfig.dbRise = 3;
max@1 499 dfConfig.adaptiveWhitening = false;
max@1 500 dfConfig.whiteningRelaxCoeff = -1;
max@1 501 dfConfig.whiteningFloor = -1;
max@1 502
max@1 503 // Initialise Beat Tracker
max@1 504 m_d = new BeatTrackerData(m_inputSampleRate, dfConfig);
max@1 505 m_d->downBeat->setBeatsPerBar(m_bpb);
max@1 506
max@1 507 // Initialise Chroma Extractor
max@1 508 m_chromadata = new ChromaData(m_inputSampleRate, blockSize);
max@1 509 m_chromadata->initialise();
max@1 510
max@1 511 return true;
max@1 512 }
max@1 513
max@1 514 void SongPartitioner::reset()
max@1 515 {
max@1 516 if (m_d) m_d->reset();
max@1 517 m_pluginFrameCount = 0;
max@1 518 }
max@1 519
max@1 520 SongPartitioner::OutputList SongPartitioner::getOutputDescriptors() const
max@1 521 {
max@1 522 OutputList list;
max@1 523 size_t outputCounter = 0;
max@1 524
max@1 525 OutputDescriptor beat;
max@1 526 beat.identifier = "beats";
max@1 527 beat.name = "Beats";
max@1 528 beat.description = "Beat locations labelled with metrical position";
max@1 529 beat.unit = "";
max@1 530 beat.hasFixedBinCount = true;
max@1 531 beat.binCount = 0;
max@1 532 beat.sampleType = OutputDescriptor::VariableSampleRate;
max@1 533 beat.sampleRate = 1.0 / m_stepSecs;
max@1 534 m_beatOutputNumber = outputCounter++;
max@1 535
max@1 536 OutputDescriptor bars;
max@1 537 bars.identifier = "bars";
max@1 538 bars.name = "Bars";
max@1 539 bars.description = "Bar locations";
max@1 540 bars.unit = "";
max@1 541 bars.hasFixedBinCount = true;
max@1 542 bars.binCount = 0;
max@1 543 bars.sampleType = OutputDescriptor::VariableSampleRate;
max@1 544 bars.sampleRate = 1.0 / m_stepSecs;
max@1 545 m_barsOutputNumber = outputCounter++;
max@1 546
max@1 547 OutputDescriptor beatcounts;
max@1 548 beatcounts.identifier = "beatcounts";
max@1 549 beatcounts.name = "Beat Count";
max@1 550 beatcounts.description = "Beat counter function";
max@1 551 beatcounts.unit = "";
max@1 552 beatcounts.hasFixedBinCount = true;
max@1 553 beatcounts.binCount = 1;
max@1 554 beatcounts.sampleType = OutputDescriptor::VariableSampleRate;
max@1 555 beatcounts.sampleRate = 1.0 / m_stepSecs;
max@1 556 m_beatcountsOutputNumber = outputCounter++;
max@1 557
max@1 558 OutputDescriptor beatsd;
max@1 559 beatsd.identifier = "beatsd";
max@1 560 beatsd.name = "Beat Spectral Difference";
max@1 561 beatsd.description = "Beat spectral difference function used for bar-line detection";
max@1 562 beatsd.unit = "";
max@1 563 beatsd.hasFixedBinCount = true;
max@1 564 beatsd.binCount = 1;
max@1 565 beatsd.sampleType = OutputDescriptor::VariableSampleRate;
max@1 566 beatsd.sampleRate = 1.0 / m_stepSecs;
max@1 567 m_beatsdOutputNumber = outputCounter++;
max@1 568
max@1 569 OutputDescriptor logscalespec;
max@1 570 logscalespec.identifier = "logscalespec";
max@1 571 logscalespec.name = "Log-Frequency Spectrum";
max@1 572 logscalespec.description = "Spectrum with linear frequency on a log scale.";
max@1 573 logscalespec.unit = "";
max@1 574 logscalespec.hasFixedBinCount = true;
max@1 575 logscalespec.binCount = nNote;
max@1 576 logscalespec.hasKnownExtents = false;
max@1 577 logscalespec.isQuantized = false;
max@1 578 logscalespec.sampleType = OutputDescriptor::FixedSampleRate;
max@1 579 logscalespec.hasDuration = false;
max@1 580 logscalespec.sampleRate = m_inputSampleRate/2048;
max@1 581 m_logscalespecOutputNumber = outputCounter++;
max@1 582
max@1 583 OutputDescriptor bothchroma;
max@1 584 bothchroma.identifier = "bothchroma";
max@1 585 bothchroma.name = "Chromagram and Bass Chromagram";
max@1 586 bothchroma.description = "Tuning-adjusted chromagram and bass chromagram (stacked on top of each other) from NNLS approximate transcription.";
max@1 587 bothchroma.unit = "";
max@1 588 bothchroma.hasFixedBinCount = true;
max@1 589 bothchroma.binCount = 24;
max@1 590 bothchroma.hasKnownExtents = false;
max@1 591 bothchroma.isQuantized = false;
max@1 592 bothchroma.sampleType = OutputDescriptor::FixedSampleRate;
max@1 593 bothchroma.hasDuration = false;
max@1 594 bothchroma.sampleRate = m_inputSampleRate/2048;
max@1 595 m_bothchromaOutputNumber = outputCounter++;
max@1 596
max@1 597 OutputDescriptor qchromafw;
max@1 598 qchromafw.identifier = "qchromafw";
max@1 599 qchromafw.name = "Pseudo-Quantised Chromagram and Bass Chromagram";
max@1 600 qchromafw.description = "Pseudo-Quantised Chromagram and Bass Chromagram (frames between two beats are identical).";
max@1 601 qchromafw.unit = "";
max@1 602 qchromafw.hasFixedBinCount = true;
max@1 603 qchromafw.binCount = 24;
max@1 604 qchromafw.hasKnownExtents = false;
max@1 605 qchromafw.isQuantized = false;
max@1 606 qchromafw.sampleType = OutputDescriptor::FixedSampleRate;
max@1 607 qchromafw.hasDuration = false;
max@1 608 qchromafw.sampleRate = m_inputSampleRate/2048;
max@1 609 m_qchromafwOutputNumber = outputCounter++;
max@1 610
max@1 611 OutputDescriptor qchroma;
max@1 612 qchroma.identifier = "qchroma";
max@1 613 qchroma.name = "Quantised Chromagram and Bass Chromagram";
max@1 614 qchroma.description = "Quantised Chromagram and Bass Chromagram.";
max@1 615 qchroma.unit = "";
max@1 616 qchroma.hasFixedBinCount = true;
max@1 617 qchroma.binCount = 24;
max@1 618 qchroma.hasKnownExtents = false;
max@1 619 qchroma.isQuantized = false;
max@1 620 qchroma.sampleType = OutputDescriptor::FixedSampleRate;
max@1 621 qchroma.hasDuration = true;
max@1 622 m_qchromaOutputNumber = outputCounter++;
max@1 623
max@1 624 OutputDescriptor segm;
max@1 625 segm.identifier = "segm";
max@1 626 segm.name = "Segmentation";
max@1 627 segm.description = "Segmentation";
max@1 628 segm.unit = "segment-type";
max@1 629 segm.hasFixedBinCount = true;
max@1 630 //segm.binCount = 24;
max@1 631 segm.binCount = 1;
max@1 632 segm.hasKnownExtents = true;
max@1 633 segm.minValue = 1;
max@1 634 segm.maxValue = 5;
max@1 635 segm.isQuantized = true;
max@1 636 segm.quantizeStep = 1;
max@1 637 segm.sampleType = OutputDescriptor::VariableSampleRate;
max@1 638 segm.hasDuration = true;
max@1 639 m_segmOutputNumber = outputCounter++;
max@1 640
max@1 641
max@1 642 /*
max@1 643 OutputList list;
max@1 644 OutputDescriptor segmentation;
max@1 645 segmentation.identifier = "segmentation";
max@1 646 segmentation.name = "Segmentation";
max@1 647 segmentation.description = "Segmentation";
max@1 648 segmentation.unit = "segment-type";
max@1 649 segmentation.hasFixedBinCount = true;
max@1 650 segmentation.binCount = 1;
max@1 651 segmentation.hasKnownExtents = true;
max@1 652 segmentation.minValue = 1;
max@1 653 segmentation.maxValue = nSegmentTypes;
max@1 654 segmentation.isQuantized = true;
max@1 655 segmentation.quantizeStep = 1;
max@1 656 segmentation.sampleType = OutputDescriptor::VariableSampleRate;
max@1 657 segmentation.sampleRate = m_inputSampleRate / getPreferredStepSize();
max@1 658 list.push_back(segmentation);
max@1 659 return list;
max@1 660 */
max@1 661
max@1 662
max@1 663 list.push_back(beat);
max@1 664 list.push_back(bars);
max@1 665 list.push_back(beatcounts);
max@1 666 list.push_back(beatsd);
max@1 667 list.push_back(logscalespec);
max@1 668 list.push_back(bothchroma);
max@1 669 list.push_back(qchromafw);
max@1 670 list.push_back(qchroma);
max@1 671 list.push_back(segm);
max@1 672
max@1 673 return list;
max@1 674 }
max@1 675
max@1 676 // Executed for each frame - called from the host
max@1 677
max@1 678 // We use time domain input, because DownBeat requires it -- so we
max@1 679 // use the time-domain version of DetectionFunction::process which
max@1 680 // does its own FFT. It requires doubles as input, so we need to
max@1 681 // make a temporary copy
max@1 682
max@1 683 // We only support a single input channel
max@1 684 SongPartitioner::FeatureSet SongPartitioner::process(const float *const *inputBuffers,Vamp::RealTime timestamp)
max@1 685 {
max@1 686 if (!m_d) {
max@1 687 cerr << "ERROR: SongPartitioner::process: "
max@1 688 << "SongPartitioner has not been initialised"
max@1 689 << endl;
max@1 690 return FeatureSet();
max@1 691 }
max@1 692
max@1 693 const int fl = m_d->dfConfig.frameLength;
max@1 694 #ifndef __GNUC__
max@1 695 double *dfinput = (double *)alloca(fl * sizeof(double));
max@1 696 #else
max@1 697 double dfinput[fl];
max@1 698 #endif
max@1 699 int sampleOffset = ((m_chromaFramesizeFactor-1) * fl) / 2;
max@1 700
max@1 701 // Since chroma needs a much longer frame size, we only ever use the very
max@1 702 // beginning of the frame for beat tracking.
max@1 703 for (int i = 0; i < fl; ++i) dfinput[i] = inputBuffers[0][i];
max@1 704 double output = m_d->df->process(dfinput);
max@1 705
max@1 706 if (m_d->dfOutput.empty()) m_d->origin = timestamp;
max@1 707
max@1 708 // std::cerr << "df[" << m_d->dfOutput.size() << "] is " << output << std::endl;
max@1 709 m_d->dfOutput.push_back(output);
max@1 710
max@1 711 // Downsample and store the incoming audio block.
max@1 712 // We have an overlap on the incoming audio stream (step size is
max@1 713 // half block size) -- this function is configured to take only a
max@1 714 // step size's worth, so effectively ignoring the overlap. Note
max@1 715 // however that this means we omit the last blocksize - stepsize
max@1 716 // samples completely for the purposes of barline detection
max@1 717 // (hopefully not a problem)
max@1 718 m_d->downBeat->pushAudioBlock(inputBuffers[0]);
max@1 719
max@1 720 // The following is not done every time, but only every m_chromaFramesizeFactor times,
max@1 721 // because the chroma does not need dense time frames.
max@1 722
max@1 723 if (m_pluginFrameCount % m_chromaStepsizeFactor == 0)
max@1 724 {
max@1 725
max@1 726 // Window the full time domain, data, FFT it and process chroma stuff.
max@1 727
max@1 728 #ifndef __GNUC__
max@1 729 float *windowedBuffers = (float *)alloca(m_chromadata->blockSize * sizeof(float));
max@1 730 #else
max@1 731 float windowedBuffers[m_chromadata->blockSize];
max@1 732 #endif
max@1 733 m_chromadata->window.cut(&inputBuffers[0][0], &windowedBuffers[0]);
max@1 734
max@1 735 // adjust timestamp (we want the middle of the frame)
max@1 736 timestamp = timestamp + Vamp::RealTime::frame2RealTime(sampleOffset, lrintf(m_inputSampleRate));
max@1 737
max@1 738 m_chromadata->baseProcess(&windowedBuffers[0], timestamp);
max@1 739
max@1 740 }
max@1 741 m_pluginFrameCount++;
max@1 742
max@1 743 FeatureSet fs;
max@1 744 fs[m_logscalespecOutputNumber].push_back(
max@1 745 m_chromadata->logSpectrum.back());
max@1 746 return fs;
max@1 747 }
max@1 748
max@1 749 SongPartitioner::FeatureSet SongPartitioner::getRemainingFeatures()
max@1 750 {
max@1 751 if (!m_d) {
max@1 752 cerr << "ERROR: SongPartitioner::getRemainingFeatures: "
max@1 753 << "SongPartitioner has not been initialised"
max@1 754 << endl;
max@1 755 return FeatureSet();
max@1 756 }
max@1 757
max@1 758 FeatureSet masterFeatureset = BeatTrack();
max@1 759 FeatureList chromaList = ChromaFeatures();
max@1 760
max@1 761 for (size_t i = 0; i < chromaList.size(); ++i)
max@1 762 {
max@1 763 masterFeatureset[m_bothchromaOutputNumber].push_back(chromaList[i]);
max@1 764 }
max@1 765
max@1 766 // quantised and pseudo-quantised (beat-wise) chroma
max@1 767 std::vector<FeatureList> quantisedChroma = BeatQuantiser(chromaList, masterFeatureset[m_beatOutputNumber]);
max@1 768
max@1 769 masterFeatureset[m_qchromafwOutputNumber] = quantisedChroma[0];
max@1 770 masterFeatureset[m_qchromaOutputNumber] = quantisedChroma[1];
max@1 771
max@1 772 // Segmentation
max@1 773 masterFeatureset[m_segmOutputNumber] = Segmenter(quantisedChroma[1]);
max@1 774
max@1 775 return(masterFeatureset);
max@1 776 }
max@1 777
max@1 778 /* ------ Beat Tracker ------ */
max@1 779
max@1 780 SongPartitioner::FeatureSet SongPartitioner::BeatTrack()
max@1 781 {
max@1 782 vector<double> df;
max@1 783 vector<double> beatPeriod;
max@1 784 vector<double> tempi;
max@1 785
max@1 786 for (size_t i = 2; i < m_d->dfOutput.size(); ++i) { // discard first two elts
max@1 787 df.push_back(m_d->dfOutput[i]);
max@1 788 beatPeriod.push_back(0.0);
max@1 789 }
max@1 790 if (df.empty()) return FeatureSet();
max@1 791
max@1 792 TempoTrackV2 tt(m_inputSampleRate, m_d->dfConfig.stepSize);
max@1 793 tt.calculateBeatPeriod(df, beatPeriod, tempi);
max@1 794
max@1 795 vector<double> beats;
max@1 796 tt.calculateBeats(df, beatPeriod, beats);
max@1 797
max@1 798 vector<int> downbeats;
max@1 799 size_t downLength = 0;
max@1 800 const float *downsampled = m_d->downBeat->getBufferedAudio(downLength);
max@1 801 m_d->downBeat->findDownBeats(downsampled, downLength, beats, downbeats);
max@1 802
max@1 803 vector<double> beatsd;
max@1 804 m_d->downBeat->getBeatSD(beatsd);
max@1 805
max@1 806 /*std::cout << "BeatTracker: found downbeats at: ";
max@1 807 for (int i = 0; i < downbeats.size(); ++i) std::cout << downbeats[i] << " " << std::endl;*/
max@1 808
max@1 809 FeatureSet returnFeatures;
max@1 810
max@1 811 char label[20];
max@1 812
max@1 813 int dbi = 0;
max@1 814 int beat = 0;
max@1 815 int bar = 0;
max@1 816
max@1 817 if (!downbeats.empty()) {
max@1 818 // get the right number for the first beat; this will be
max@1 819 // incremented before use (at top of the following loop)
max@1 820 int firstDown = downbeats[0];
max@1 821 beat = m_bpb - firstDown - 1;
max@1 822 if (beat == m_bpb) beat = 0;
max@1 823 }
max@1 824
max@1 825 for (size_t i = 0; i < beats.size(); ++i) {
max@1 826
max@1 827 size_t frame = beats[i] * m_d->dfConfig.stepSize;
max@1 828
max@1 829 if (dbi < downbeats.size() && i == downbeats[dbi]) {
max@1 830 beat = 0;
max@1 831 ++bar;
max@1 832 ++dbi;
max@1 833 } else {
max@1 834 ++beat;
max@1 835 }
max@1 836
max@1 837 /* Ooutput Section */
max@1 838
max@1 839 // outputs are:
max@1 840 //
max@1 841 // 0 -> beats
max@1 842 // 1 -> bars
max@1 843 // 2 -> beat counter function
max@1 844
max@1 845 Feature feature;
max@1 846 feature.hasTimestamp = true;
max@1 847 feature.timestamp = m_d->origin + Vamp::RealTime::frame2RealTime (frame, lrintf(m_inputSampleRate));
max@1 848
max@1 849 sprintf(label, "%d", beat + 1);
max@1 850 feature.label = label;
max@1 851 returnFeatures[m_beatOutputNumber].push_back(feature); // labelled beats
max@1 852
max@1 853 feature.values.push_back(beat + 1);
max@1 854 returnFeatures[m_beatcountsOutputNumber].push_back(feature); // beat function
max@1 855
max@1 856 if (i > 0 && i <= beatsd.size()) {
max@1 857 feature.values.clear();
max@1 858 feature.values.push_back(beatsd[i-1]);
max@1 859 feature.label = "";
max@1 860 returnFeatures[m_beatsdOutputNumber].push_back(feature); // beat spectral difference
max@1 861 }
max@1 862
max@1 863 if (beat == 0) {
max@1 864 feature.values.clear();
max@1 865 sprintf(label, "%d", bar);
max@1 866 feature.label = label;
max@1 867 returnFeatures[m_barsOutputNumber].push_back(feature); // bars
max@1 868 }
max@1 869 }
max@1 870
max@1 871 return returnFeatures;
max@1 872 }
max@1 873
max@1 874
max@1 875 /* ------ Chroma Extractor ------ */
max@1 876
max@1 877 SongPartitioner::FeatureList SongPartitioner::ChromaFeatures()
max@1 878 {
max@1 879
max@1 880 FeatureList returnFeatureList;
max@1 881 FeatureList tunedlogfreqspec;
max@1 882
max@1 883 if (m_chromadata->logSpectrum.size() == 0) return returnFeatureList;
max@1 884
max@1 885 /** Calculate Tuning
max@1 886 calculate tuning from (using the angle of the complex number defined by the
max@1 887 cumulative mean real and imag values)
max@1 888 **/
max@1 889 float meanTuningImag = 0;
max@1 890 float meanTuningReal = 0;
max@1 891 for (int iBPS = 0; iBPS < nBPS; ++iBPS) {
max@1 892 meanTuningReal += m_chromadata->meanTunings[iBPS] * m_chromadata->cosvalues[iBPS];
max@1 893 meanTuningImag += m_chromadata->meanTunings[iBPS] * m_chromadata->sinvalues[iBPS];
max@1 894 }
max@1 895 float cumulativetuning = 440 * pow(2,atan2(meanTuningImag, meanTuningReal)/(24*M_PI));
max@1 896 float normalisedtuning = atan2(meanTuningImag, meanTuningReal)/(2*M_PI);
max@1 897 int intShift = floor(normalisedtuning * 3);
max@1 898 float floatShift = normalisedtuning * 3 - intShift; // floatShift is a really bad name for this
max@1 899
max@1 900 char buffer0 [50];
max@1 901
max@1 902 sprintf(buffer0, "estimated tuning: %0.1f Hz", cumulativetuning);
max@1 903
max@1 904 /** Tune Log-Frequency Spectrogram
max@1 905 calculate a tuned log-frequency spectrogram (f2): use the tuning estimated above (kinda f0) to
max@1 906 perform linear interpolation on the existing log-frequency spectrogram (kinda f1).
max@1 907 **/
max@1 908 cerr << endl << "[NNLS Chroma Plugin] Tuning Log-Frequency Spectrogram ... ";
max@1 909
max@1 910 float tempValue = 0;
max@1 911
max@1 912 int count = 0;
max@1 913
max@1 914 for (FeatureList::iterator i = m_chromadata->logSpectrum.begin(); i != m_chromadata->logSpectrum.end(); ++i)
max@1 915 {
max@1 916
max@1 917 Feature f1 = *i;
max@1 918 Feature f2; // tuned log-frequency spectrum
max@1 919
max@1 920 f2.hasTimestamp = true;
max@1 921 f2.timestamp = f1.timestamp;
max@1 922
max@1 923 f2.values.push_back(0.0);
max@1 924 f2.values.push_back(0.0); // set lower edge to zero
max@1 925
max@1 926 if (m_chromadata->tuneLocal) {
max@1 927 intShift = floor(m_chromadata->localTuning[count] * 3);
max@1 928 floatShift = m_chromadata->localTuning[count] * 3 - intShift;
max@1 929 // floatShift is a really bad name for this
max@1 930 }
max@1 931
max@1 932 for (int k = 2; k < (int)f1.values.size() - 3; ++k)
max@1 933 { // interpolate all inner bins
max@1 934 tempValue = f1.values[k + intShift] * (1-floatShift) + f1.values[k+intShift+1] * floatShift;
max@1 935 f2.values.push_back(tempValue);
max@1 936 }
max@1 937
max@1 938 f2.values.push_back(0.0);
max@1 939 f2.values.push_back(0.0);
max@1 940 f2.values.push_back(0.0); // upper edge
max@1 941
max@1 942 vector<float> runningmean = SpecialConvolution(f2.values,m_chromadata->hw);
max@1 943 vector<float> runningstd;
max@1 944 for (int i = 0; i < nNote; i++) { // first step: squared values into vector (variance)
max@1 945 runningstd.push_back((f2.values[i] - runningmean[i]) * (f2.values[i] - runningmean[i]));
max@1 946 }
max@1 947 runningstd = SpecialConvolution(runningstd,m_chromadata->hw); // second step convolve
max@1 948 for (int i = 0; i < nNote; i++)
max@1 949 {
max@1 950
max@1 951 runningstd[i] = sqrt(runningstd[i]);
max@1 952 // square root to finally have running std
max@1 953
max@1 954 if (runningstd[i] > 0)
max@1 955 {
max@1 956 f2.values[i] = (f2.values[i] - runningmean[i]) > 0 ?
max@1 957 (f2.values[i] - runningmean[i]) / pow(runningstd[i],m_chromadata->whitening) : 0;
max@1 958 }
max@1 959
max@1 960 if (f2.values[i] < 0) {
max@1 961
max@1 962 cerr << "ERROR: negative value in logfreq spectrum" << endl;
max@1 963
max@1 964 }
max@1 965 }
max@1 966 tunedlogfreqspec.push_back(f2);
max@1 967 count++;
max@1 968 }
max@1 969 cerr << "done." << endl;
max@1 970 /** Semitone spectrum and chromagrams
max@1 971 Semitone-spaced log-frequency spectrum derived
max@1 972 from the tuned log-freq spectrum above. the spectrum
max@1 973 is inferred using a non-negative least squares algorithm.
max@1 974 Three different kinds of chromagram are calculated, "treble", "bass", and "both" (which means
max@1 975 bass and treble stacked onto each other).
max@1 976 **/
max@1 977 if (m_chromadata->useNNLS == 0) {
max@1 978 cerr << "[NNLS Chroma Plugin] Mapping to semitone spectrum and chroma ... ";
max@1 979 } else {
max@1 980 cerr << "[NNLS Chroma Plugin] Performing NNLS and mapping to chroma ... ";
max@1 981 }
max@1 982
max@1 983 vector<float> oldchroma = vector<float>(12,0);
max@1 984 vector<float> oldbasschroma = vector<float>(12,0);
max@1 985 count = 0;
max@1 986
max@1 987 for (FeatureList::iterator it = tunedlogfreqspec.begin(); it != tunedlogfreqspec.end(); ++it) {
max@1 988 Feature logfreqsp = *it; // logfreq spectrum
max@1 989 Feature bothchroma; // treble and bass chromagram
max@1 990
max@1 991 bothchroma.hasTimestamp = true;
max@1 992 bothchroma.timestamp = logfreqsp.timestamp;
max@1 993
max@1 994 float b[nNote];
max@1 995
max@1 996 bool some_b_greater_zero = false;
max@1 997 float sumb = 0;
max@1 998 for (int i = 0; i < nNote; i++) {
max@1 999 b[i] = logfreqsp.values[i];
max@1 1000 sumb += b[i];
max@1 1001 if (b[i] > 0) {
max@1 1002 some_b_greater_zero = true;
max@1 1003 }
max@1 1004 }
max@1 1005
max@1 1006 // here's where the non-negative least squares algorithm calculates the note activation x
max@1 1007
max@1 1008 vector<float> chroma = vector<float>(12, 0);
max@1 1009 vector<float> basschroma = vector<float>(12, 0);
max@1 1010 float currval;
max@1 1011 int iSemitone = 0;
max@1 1012
max@1 1013 if (some_b_greater_zero) {
max@1 1014 if (m_chromadata->useNNLS == 0) {
max@1 1015 for (int iNote = nBPS/2 + 2; iNote < nNote - nBPS/2; iNote += nBPS) {
max@1 1016 currval = 0;
max@1 1017 for (int iBPS = -nBPS/2; iBPS < nBPS/2+1; ++iBPS) {
max@1 1018 currval += b[iNote + iBPS] * (1-abs(iBPS*1.0/(nBPS/2+1)));
max@1 1019 }
max@1 1020 chroma[iSemitone % 12] += currval * treblewindow[iSemitone];
max@1 1021 basschroma[iSemitone % 12] += currval * basswindow[iSemitone];
max@1 1022 iSemitone++;
max@1 1023 }
max@1 1024
max@1 1025 } else {
max@1 1026 float x[84+1000];
max@1 1027 for (int i = 1; i < 1084; ++i) x[i] = 1.0;
max@1 1028 vector<int> signifIndex;
max@1 1029 int index=0;
max@1 1030 sumb /= 84.0;
max@1 1031 for (int iNote = nBPS/2 + 2; iNote < nNote - nBPS/2; iNote += nBPS) {
max@1 1032 float currval = 0;
max@1 1033 for (int iBPS = -nBPS/2; iBPS < nBPS/2+1; ++iBPS) {
max@1 1034 currval += b[iNote + iBPS];
max@1 1035 }
max@1 1036 if (currval > 0) signifIndex.push_back(index);
max@1 1037 index++;
max@1 1038 }
max@1 1039 float rnorm;
max@1 1040 float w[84+1000];
max@1 1041 float zz[84+1000];
max@1 1042 int indx[84+1000];
max@1 1043 int mode;
max@1 1044 int dictsize = nNote*signifIndex.size();
max@1 1045
max@1 1046 float *curr_dict = new float[dictsize];
max@1 1047 for (int iNote = 0; iNote < (int)signifIndex.size(); ++iNote) {
max@1 1048 for (int iBin = 0; iBin < nNote; iBin++) {
max@1 1049 curr_dict[iNote * nNote + iBin] =
max@1 1050 1.0 * m_chromadata->dict[signifIndex[iNote] * nNote + iBin];
max@1 1051 }
max@1 1052 }
max@1 1053 nnls(curr_dict, nNote, nNote, signifIndex.size(), b, x, &rnorm, w, zz, indx, &mode);
max@1 1054 delete [] curr_dict;
max@1 1055 for (int iNote = 0; iNote < (int)signifIndex.size(); ++iNote) {
max@1 1056 // cerr << mode << endl;
max@1 1057 chroma[signifIndex[iNote] % 12] += x[iNote] * treblewindow[signifIndex[iNote]];
max@1 1058 basschroma[signifIndex[iNote] % 12] += x[iNote] * basswindow[signifIndex[iNote]];
max@1 1059 }
max@1 1060 }
max@1 1061 }
max@1 1062
max@1 1063 chroma.insert(chroma.begin(), basschroma.begin(), basschroma.end());
max@1 1064 // just stack the both chromas
max@1 1065
max@1 1066 bothchroma.values = chroma;
max@1 1067 returnFeatureList.push_back(bothchroma);
max@1 1068 count++;
max@1 1069 }
max@1 1070 cerr << "done." << endl;
max@1 1071
max@1 1072 return returnFeatureList;
max@1 1073 }
max@1 1074
max@1 1075 /* ------ Beat Quantizer ------ */
max@1 1076
max@4 1077 std::vector<Vamp::Plugin::FeatureList>
max@4 1078 SongPartitioner::BeatQuantiser(Vamp::Plugin::FeatureList chromagram, Vamp::Plugin::FeatureList beats)
max@1 1079 {
max@1 1080 std::vector<FeatureList> returnVector;
max@1 1081
max@1 1082 FeatureList fwQchromagram; // frame-wise beat-quantised chroma
max@1 1083 FeatureList bwQchromagram; // beat-wise beat-quantised chroma
max@1 1084
max@4 1085 int nChromaFrame = (int) chromagram.size();
max@4 1086 int nBeat = (int) beats.size();
max@1 1087
max@1 1088 if (nBeat == 0 && nChromaFrame == 0) return returnVector;
max@1 1089
max@1 1090 size_t nBin = chromagram[0].values.size();
max@1 1091
max@1 1092 vector<float> tempChroma = vector<float>(nBin);
max@1 1093
max@1 1094 Vamp::RealTime beatTimestamp = Vamp::RealTime::zeroTime;
max@1 1095 int currBeatCount = -1; // start before first beat
max@1 1096 int framesInBeat = 0;
max@1 1097
max@4 1098 for (int iChroma = 0; iChroma < nChromaFrame; ++iChroma)
max@1 1099 {
max@4 1100 Vamp::RealTime frameTimestamp = chromagram[iChroma].timestamp;
max@4 1101 Vamp::RealTime tempBeatTimestamp;
max@4 1102
max@4 1103 if (currBeatCount != beats.size()-1) tempBeatTimestamp = beats[currBeatCount+1].timestamp;
max@4 1104 else tempBeatTimestamp = chromagram[nChromaFrame-1].timestamp;
max@4 1105
max@4 1106 if (frameTimestamp > tempBeatTimestamp ||
max@1 1107 iChroma == nChromaFrame-1)
max@1 1108 {
max@1 1109 // new beat (or last chroma frame)
max@1 1110 // 1. finish all the old beat processing
max@4 1111 if (framesInBeat > 0)
max@4 1112 {
max@4 1113 for (int i = 0; i < nBin; ++i) tempChroma[i] /= framesInBeat; // average
max@4 1114 }
max@1 1115
max@1 1116 Feature bwQchromaFrame;
max@1 1117 bwQchromaFrame.hasTimestamp = true;
max@1 1118 bwQchromaFrame.timestamp = beatTimestamp;
max@1 1119 bwQchromaFrame.values = tempChroma;
max@1 1120 bwQchromaFrame.duration = beats[currBeatCount+1].timestamp - beats[currBeatCount].timestamp;
max@1 1121 bwQchromagram.push_back(bwQchromaFrame);
max@1 1122
max@1 1123 for (int iFrame = -framesInBeat; iFrame < 0; ++iFrame)
max@1 1124 {
max@1 1125 Feature fwQchromaFrame;
max@1 1126 fwQchromaFrame.hasTimestamp = true;
max@1 1127 fwQchromaFrame.timestamp = chromagram[iChroma+iFrame].timestamp;
max@1 1128 fwQchromaFrame.values = tempChroma; // all between two beats get the same
max@1 1129 fwQchromagram.push_back(fwQchromaFrame);
max@1 1130 }
max@1 1131
max@1 1132 // 2. increments / resets for current (new) beat
max@1 1133 currBeatCount++;
max@1 1134 beatTimestamp = beats[currBeatCount].timestamp;
max@1 1135 for (size_t i = 0; i < nBin; ++i) tempChroma[i] = 0; // average
max@1 1136 framesInBeat = 0;
max@1 1137 }
max@1 1138 framesInBeat++;
max@1 1139 for (size_t i = 0; i < nBin; ++i) tempChroma[i] += chromagram[iChroma].values[i];
max@1 1140 }
max@1 1141 returnVector.push_back(fwQchromagram);
max@1 1142 returnVector.push_back(bwQchromagram);
max@1 1143 }
max@1 1144
max@1 1145 /* -------------------------------- */
max@1 1146 /* ------ Support Functions ------ */
max@1 1147 /* -------------------------------- */
max@1 1148
max@1 1149 // one-dimesion median filter
max@1 1150 arma::vec medfilt1(arma::vec v, int medfilt_length)
max@1 1151 {
max@1 1152 int halfWin = medfilt_length/2;
max@1 1153
max@1 1154 // result vector
max@1 1155 arma::vec res = arma::zeros<arma::vec>(v.size());
max@1 1156
max@1 1157 // padding
max@1 1158 arma::vec padV = arma::zeros<arma::vec>(v.size()+medfilt_length-1);
max@1 1159
max@1 1160 for (unsigned i=medfilt_length/2; i < medfilt_length/2+v.size(); ++ i)
max@1 1161 {
max@1 1162 padV(i) = v(i-medfilt_length/2);
max@1 1163 }
max@1 1164
max@1 1165 // Median filter
max@1 1166 arma::vec win = arma::zeros<arma::vec>(medfilt_length);
max@1 1167
max@1 1168 for (unsigned i=0; i < v.size(); ++i)
max@1 1169 {
max@1 1170 win = padV.subvec(i,i+halfWin*2);
max@1 1171 win = sort(win);
max@1 1172 res(i) = win(halfWin);
max@1 1173 }
max@1 1174
max@1 1175 return res;
max@1 1176 }
max@1 1177
max@1 1178
max@1 1179 // Quantile
max@1 1180 double quantile(arma::vec v, double p)
max@1 1181 {
max@1 1182 arma::vec sortV = arma::sort(v);
max@1 1183 int n = sortV.size();
max@1 1184 arma::vec x = arma::zeros<vec>(n+2);
max@1 1185 arma::vec y = arma::zeros<vec>(n+2);
max@1 1186
max@1 1187 x(0) = 0;
max@1 1188 x(n+1) = 100;
max@1 1189
max@1 1190 for (unsigned i=1; i<n+1; ++i)
max@1 1191 x(i) = 100*(0.5+(i-1))/n;
max@1 1192
max@1 1193 y(0) = sortV(0);
max@1 1194 y.subvec(1,n) = sortV;
max@1 1195 y(n+1) = sortV(n-1);
max@1 1196
max@1 1197 arma::uvec x2index = find(x>=p*100);
max@1 1198
max@1 1199 // Interpolation
max@1 1200 double x1 = x(x2index(0)-1);
max@1 1201 double x2 = x(x2index(0));
max@1 1202 double y1 = y(x2index(0)-1);
max@1 1203 double y2 = y(x2index(0));
max@1 1204
max@1 1205 double res = (y2-y1)/(x2-x1)*(p*100-x1)+y1;
max@1 1206
max@1 1207 return res;
max@1 1208 }
max@1 1209
max@1 1210 // Max Filtering
max@1 1211 arma::mat maxfilt1(arma::mat inmat, int len)
max@1 1212 {
max@1 1213 arma::mat outmat = inmat;
max@1 1214
max@1 1215 for (int i=0; i<inmat.n_rows; ++i)
max@1 1216 {
max@1 1217 if (arma::sum(inmat.row(i)) > 0)
max@1 1218 {
max@1 1219 // Take a window of rows
max@1 1220 int startWin;
max@1 1221 int endWin;
max@1 1222
max@1 1223 if (0 > i-len)
max@1 1224 startWin = 0;
max@1 1225 else
max@1 1226 startWin = i-len;
max@1 1227
max@1 1228 if (inmat.n_rows-1 < i+len-1)
max@1 1229 endWin = inmat.n_rows-1;
max@1 1230 else
max@1 1231 endWin = i+len-1;
max@1 1232
max@1 1233 outmat(i,span::all) = arma::max(inmat(span(startWin,endWin),span::all));
max@1 1234 }
max@1 1235 }
max@1 1236
max@1 1237 return outmat;
max@1 1238
max@1 1239 }
max@1 1240
max@1 1241 // Null Parts
max@1 1242 Part nullpart(vector<Part> parts, arma::vec barline)
max@1 1243 {
max@1 1244 arma::uvec nullindices = arma::ones<arma::uvec>(barline.size());
max@1 1245 for (unsigned iPart=0; iPart<parts.size(); ++iPart)
max@1 1246 {
max@7 1247 //for (unsigned iIndex=0; iIndex < parts[0].indices.size(); ++iIndex)
max@7 1248 for (unsigned iIndex=0; iIndex < parts[iPart].indices.size(); ++iIndex)
max@1 1249 for (unsigned i=0; i<parts[iPart].n; ++i)
max@1 1250 {
max@1 1251 unsigned ind = parts[iPart].indices[iIndex]+i;
max@1 1252 nullindices(ind) = 0;
max@1 1253 }
max@1 1254 }
max@7 1255
max@1 1256 Part newPart;
max@1 1257 newPart.n = 1;
max@1 1258 uvec q = find(nullindices > 0);
max@1 1259
max@1 1260 for (unsigned i=0; i<q.size();++i)
max@1 1261 newPart.indices.push_back(q(i));
max@7 1262
max@1 1263 newPart.letter = '-';
max@1 1264 newPart.value = 0;
max@1 1265 newPart.level = 0;
max@1 1266
max@1 1267 return newPart;
max@1 1268 }
max@1 1269
max@1 1270
max@1 1271 // Merge Nulls
max@1 1272 void mergenulls(vector<Part> &parts)
max@1 1273 {
max@1 1274 for (unsigned iPart=0; iPart<parts.size(); ++iPart)
max@1 1275 {
max@1 1276
max@1 1277 vector<Part> newVectorPart;
max@1 1278
max@1 1279 if (parts[iPart].letter.compare("-")==0)
max@1 1280 {
max@1 1281 sort (parts[iPart].indices.begin(), parts[iPart].indices.end());
max@1 1282 unsigned newpartind = -1;
max@1 1283
max@1 1284 vector<int> indices;
max@1 1285 indices.push_back(-2);
max@1 1286
max@1 1287 for (unsigned iIndex=0; iIndex<parts[iPart].indices.size(); ++iIndex)
max@1 1288 indices.push_back(parts[iPart].indices[iIndex]);
max@1 1289
max@1 1290 for (unsigned iInd=1; iInd < indices.size(); ++iInd)
max@1 1291 {
max@1 1292 if (indices[iInd] - indices[iInd-1] > 1)
max@1 1293 {
max@1 1294 newpartind++;
max@1 1295
max@1 1296 Part newPart;
max@1 1297 newPart.letter = 'n';
max@1 1298 std::stringstream out;
max@1 1299 out << newpartind+1;
max@1 1300 newPart.letter.append(out.str());
max@1 1301 newPart.value = 20+newpartind+1;
max@1 1302 newPart.n = 1;
max@1 1303 newPart.indices.push_back(indices[iInd]);
max@1 1304 newPart.level = 0;
max@1 1305
max@1 1306 newVectorPart.push_back(newPart);
max@1 1307 }
max@1 1308 else
max@1 1309 {
max@1 1310 newVectorPart[newpartind].n = newVectorPart[newpartind].n+1;
max@1 1311 }
max@1 1312 }
max@1 1313 parts.erase (parts.end());
max@1 1314
max@1 1315 for (unsigned i=0; i<newVectorPart.size(); ++i)
max@1 1316 parts.push_back(newVectorPart[i]);
max@1 1317 }
max@1 1318 }
max@1 1319 }
max@1 1320
max@1 1321 /* ------ Segmentation ------ */
max@1 1322
max@1 1323 vector<Part> songSegment(Vamp::Plugin::FeatureList quatisedChromagram)
max@1 1324 {
max@1 1325
max@1 1326
max@1 1327 /* ------ Parameters ------ */
max@1 1328 double thresh_beat = 0.85;
max@1 1329 double thresh_seg = 0.80;
max@1 1330 int medfilt_length = 5;
max@1 1331 int minlength = 28;
max@1 1332 int maxlength = 128;
max@1 1333 double quantilePerc = 0.1;
max@1 1334 /* ------------------------ */
max@1 1335
max@1 1336
max@1 1337 // Collect Info
max@1 1338 int nBeat = quatisedChromagram.size(); // Number of feature vector
max@1 1339 int nFeatValues = quatisedChromagram[0].values.size(); // Number of values for each feature vector
max@1 1340
max@1 1341 arma::irowvec timeStamp = arma::zeros<arma::imat>(1,nBeat); // Vector of Time Stamps
max@1 1342
max@1 1343 // Save time stamp as a Vector
max@1 1344 if (quatisedChromagram[0].hasTimestamp)
max@1 1345 {
max@1 1346 for (unsigned i = 0; i < nBeat; ++ i)
max@1 1347 timeStamp[i] = quatisedChromagram[i].timestamp.nsec;
max@1 1348 }
max@1 1349
max@1 1350
max@1 1351 // Build a ObservationTOFeatures Matrix
max@1 1352 arma::mat featVal = arma::zeros<mat>(nBeat,nFeatValues/2);
max@1 1353
max@1 1354 for (unsigned i = 0; i < nBeat; ++ i)
max@1 1355 for (unsigned j = 0; j < nFeatValues/2; ++ j)
max@1 1356 {
max@1 1357 featVal(i,j) = (quatisedChromagram[i].values[j]+quatisedChromagram[i].values[j+12]) * 0.8;
max@1 1358 }
max@1 1359
max@1 1360 // Set to arbitrary value to feature vectors with low std
max@1 1361 arma::mat a = stddev(featVal,1,1);
max@1 1362
max@1 1363 // Feature Colleration Matrix
max@1 1364 arma::mat simmat0 = 1-arma::cor(arma::trans(featVal));
max@1 1365
max@1 1366
max@1 1367 for (unsigned i = 0; i < nBeat; ++ i)
max@1 1368 {
max@1 1369 if (a(i)<0.000001)
max@1 1370 {
max@1 1371 featVal(i,1) = 1000; // arbitrary
max@1 1372
max@1 1373 for (unsigned j = 0; j < nFeatValues/2; ++j)
max@1 1374 {
max@1 1375 simmat0(i,j) = 1;
max@1 1376 simmat0(j,i) = 1;
max@1 1377 }
max@1 1378 }
max@1 1379 }
max@1 1380
max@1 1381 arma::mat simmat = 1-simmat0/2;
max@1 1382
max@1 1383 // -------- To delate when the proble with the add of beat will be solved -------
max@1 1384 for (unsigned i = 0; i < nBeat; ++ i)
max@1 1385 for (unsigned j = 0; j < nBeat; ++ j)
max@1 1386 if (!std::isfinite(simmat(i,j)))
max@1 1387 simmat(i,j)=0;
max@1 1388 // ------------------------------------------------------------------------------
max@1 1389
max@1 1390 // Median Filtering applied to the Correlation Matrix
max@1 1391 // The median filter is for each diagonal of the Matrix
max@1 1392 arma::mat median_simmat = arma::zeros<arma::mat>(nBeat,nBeat);
max@1 1393
max@1 1394 for (unsigned i = 0; i < nBeat; ++ i)
max@1 1395 {
max@1 1396 arma::vec temp = medfilt1(simmat.diag(i),medfilt_length);
max@1 1397 median_simmat.diag(i) = temp;
max@1 1398 median_simmat.diag(-i) = temp;
max@1 1399 }
max@1 1400
max@1 1401 for (unsigned i = 0; i < nBeat; ++ i)
max@1 1402 for (unsigned j = 0; j < nBeat; ++ j)
max@1 1403 if (!std::isfinite(median_simmat(i,j)))
max@1 1404 median_simmat(i,j) = 0;
max@1 1405
max@1 1406 // -------------- NOT CONVERTED -------------------------------------
max@1 1407 // if param.seg.standardise
max@1 1408 // med_median_simmat = repmat(median(median_simmat),nBeat,1);
max@1 1409 // std_median_simmat = repmat(std(median_simmat),nBeat,1);
max@1 1410 // median_simmat = (median_simmat - med_median_simmat) ./ std_median_simmat;
max@1 1411 // end
max@1 1412 // --------------------------------------------------------
max@1 1413
max@1 1414 // Retrieve Bar Bounderies
max@1 1415 arma::uvec dup = find(median_simmat > thresh_beat);
max@1 1416 arma::mat potential_duplicates = arma::zeros<arma::mat>(nBeat,nBeat);
max@1 1417 potential_duplicates.elem(dup) = arma::ones<arma::vec>(dup.size());
max@1 1418 potential_duplicates = trimatu(potential_duplicates);
max@1 1419
max@1 1420 unsigned nPartlengths = round((maxlength-minlength)/4)+1;
max@1 1421 arma::vec partlengths = zeros<arma::vec>(nPartlengths);
max@1 1422
max@1 1423 for (unsigned i = 0; i < nPartlengths; ++ i)
max@1 1424 partlengths(i) = (i*4)+ minlength;
max@1 1425
max@1 1426 // initialise arrays
max@1 1427 arma::cube simArray = zeros<arma::cube>(nBeat,nBeat,nPartlengths);
max@1 1428 arma::cube decisionArray2 = zeros<arma::cube>(nBeat,nBeat,nPartlengths);
max@1 1429
max@1 1430 int conta = 0;
max@1 1431
max@1 1432 //for (unsigned iLength = 0; iLength < nPartlengths; ++ iLength)
max@1 1433 for (unsigned iLength = 0; iLength < 20; ++ iLength)
max@1 1434 {
max@1 1435 unsigned len = partlengths(iLength);
max@1 1436 unsigned nUsedBeat = nBeat - len + 1; // number of potential rep beginnings: they can't overlap at the end of the song
max@1 1437
max@1 1438 for (unsigned iBeat = 0; iBeat < nUsedBeat; ++ iBeat) // looping over all columns (arbitrarily chosen columns)
max@1 1439 {
max@1 1440 arma::uvec help2 = find(potential_duplicates(span(0,nUsedBeat-1),iBeat)==1);
max@1 1441
max@1 1442 for (unsigned i=0; i<help2.size(); ++i)
max@1 1443 {
max@1 1444
max@1 1445 // measure how well two length len segments go together
max@1 1446 int kBeat = help2(i);
max@1 1447 arma::vec distrib = median_simmat(span(iBeat,iBeat+len-1),span(kBeat,kBeat+len-1)).diag(0);
max@1 1448 simArray(iBeat,kBeat,iLength) = quantile(distrib,quantilePerc);
max@1 1449 }
max@1 1450 }
max@1 1451
max@1 1452 arma::mat tempM = simArray(span(0,nUsedBeat-1),span(0,nUsedBeat-1),span(iLength,iLength));
max@1 1453 simArray.slice(iLength)(span(0,nUsedBeat-1),span(0,nUsedBeat-1)) = tempM + arma::trans(tempM) - (eye<mat>(nUsedBeat,nUsedBeat)%tempM);
max@1 1454
max@1 1455 // convolution
max@1 1456 arma::vec K = arma::zeros<vec>(3);
max@1 1457 K << 0.01 << 0.98 << 0.01;
max@1 1458
max@1 1459
max@1 1460 for (unsigned i=0; i<simArray.n_rows; ++i)
max@1 1461 {
max@1 1462 arma::rowvec t = arma::conv((arma::rowvec)simArray.slice(iLength).row(i),K);
max@1 1463 simArray.slice(iLength)(i,span::all) = t.subvec(1,t.size()-2);
max@1 1464 }
max@1 1465
max@1 1466 // take only over-average bars that do not overlap
max@1 1467
max@1 1468 arma::mat temp = arma::zeros<mat>(simArray.n_rows, simArray.n_cols);
max@1 1469 temp(span::all, span(0,nUsedBeat-1)) = simArray.slice(iLength)(span::all,span(0,nUsedBeat-1));
max@1 1470
max@1 1471 for (unsigned i=0; i<temp.n_rows; ++i)
max@1 1472 for (unsigned j=0; j<nUsedBeat; ++j)
max@1 1473 if (temp(i,j) < thresh_seg)
max@1 1474 temp(i,j) = 0;
max@1 1475
max@1 1476 decisionArray2.slice(iLength) = temp;
max@1 1477
max@1 1478 arma::mat maxMat = maxfilt1(decisionArray2.slice(iLength),len-1);
max@1 1479
max@1 1480 for (unsigned i=0; i<decisionArray2.n_rows; ++i)
max@1 1481 for (unsigned j=0; j<decisionArray2.n_cols; ++j)
max@1 1482 if (decisionArray2.slice(iLength)(i,j) < maxMat(i,j))
max@1 1483 decisionArray2.slice(iLength)(i,j) = 0;
max@1 1484
max@1 1485 decisionArray2.slice(iLength) = decisionArray2.slice(iLength) % arma::trans(decisionArray2.slice(iLength));
max@1 1486
max@1 1487 for (unsigned i=0; i<simArray.n_rows; ++i)
max@1 1488 for (unsigned j=0; j<simArray.n_cols; ++j)
max@1 1489 if (simArray.slice(iLength)(i,j) < thresh_seg)
max@1 1490 potential_duplicates(i,j) = 0;
max@1 1491 }
max@1 1492
max@1 1493 // Milk the data
max@1 1494
max@1 1495 arma::mat bestval;
max@1 1496
max@1 1497 for (unsigned iLength=0; iLength<nPartlengths; ++iLength)
max@1 1498 {
max@1 1499 arma::mat temp = arma::zeros<arma::mat>(decisionArray2.n_rows,decisionArray2.n_cols);
max@1 1500
max@1 1501 for (unsigned rows=0; rows<decisionArray2.n_rows; ++rows)
max@1 1502 for (unsigned cols=0; cols<decisionArray2.n_cols; ++cols)
max@1 1503 if (decisionArray2.slice(iLength)(rows,cols) > 0)
max@1 1504 temp(rows,cols) = 1;
max@1 1505
max@1 1506 arma::vec currLogicSum = arma::sum(temp,1);
max@1 1507
max@1 1508 for (unsigned iBeat=0; iBeat<nBeat; ++iBeat)
max@1 1509 if (currLogicSum(iBeat) > 1)
max@1 1510 {
max@1 1511 arma::vec t = decisionArray2.slice(iLength)(span::all,iBeat);
max@1 1512 double currSum = sum(t);
max@1 1513
max@1 1514 unsigned count = 0;
max@1 1515 for (unsigned i=0; i<t.size(); ++i)
max@1 1516 if (t(i)>0)
max@1 1517 count++;
max@1 1518
max@1 1519 currSum = (currSum/count)/2;
max@1 1520
max@1 1521 arma::rowvec t1;
max@1 1522 t1 << (currLogicSum(iBeat)-1) * partlengths(iLength) << currSum << iLength << iBeat << currLogicSum(iBeat);
max@1 1523
max@1 1524 bestval = join_cols(bestval,t1);
max@1 1525 }
max@1 1526 }
max@1 1527
max@1 1528 // Definition of the resulting vector
max@1 1529 vector<Part> parts;
max@1 1530
max@1 1531 // make a table of all valid sets of parts
max@1 1532
max@1 1533 char partletters[] = {'A','B','C','D','E','F','G', 'H','I','J','K','L','M','N','O','P','Q','R','S'};
max@1 1534 unsigned partvalues[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19};
max@1 1535 arma::vec valid_sets = arma::ones<arma::vec>(bestval.n_rows);
max@1 1536
max@1 1537 if (!bestval.is_empty())
max@1 1538 {
max@1 1539
max@1 1540 // In questo punto viene introdotto un errore alla 3 cifra decimale
max@1 1541
max@1 1542 arma::colvec t = arma::zeros<arma::colvec>(bestval.n_rows);
max@1 1543 for (unsigned i=0; i<bestval.n_rows; ++i)
max@1 1544 {
max@1 1545 t(i) = bestval(i,1)*2;
max@1 1546 }
max@1 1547
max@1 1548 double m = t.max();
max@1 1549
max@1 1550 bestval(span::all,1) = bestval(span::all,1) / m;
max@1 1551 bestval(span::all,0) = bestval(span::all,0) + bestval(span::all,1);
max@1 1552
max@1 1553 arma::mat bestval2;
max@1 1554 for (unsigned i=0; i<bestval.n_cols; ++i)
max@1 1555 if (i!=1)
max@1 1556 bestval2 = join_rows(bestval2,bestval.col(i));
max@1 1557
max@6 1558 for (unsigned kSeg=0; kSeg<6; ++kSeg)
max@1 1559 {
max@1 1560 arma::mat currbestvals = arma::zeros<arma::mat>(bestval2.n_rows, bestval2.n_cols);
max@1 1561 for (unsigned i=0; i<bestval2.n_rows; ++i)
max@1 1562 for (unsigned j=0; j<bestval2.n_cols; ++j)
max@1 1563 if (valid_sets(i))
max@1 1564 currbestvals(i,j) = bestval2(i,j);
max@1 1565
max@1 1566 arma::vec t1 = currbestvals.col(0);
max@1 1567 double ma;
max@1 1568 uword maIdx;
max@1 1569 ma = t1.max(maIdx);
max@6 1570
max@6 1571 if ((maIdx == 0)&&(ma == 0))
max@6 1572 break;
max@1 1573
max@1 1574 double bestLength = partlengths(currbestvals(maIdx,1));
max@1 1575 arma::rowvec bestIndices = decisionArray2.slice(currbestvals(maIdx,1))(currbestvals(maIdx,2),span::all);
max@1 1576
max@1 1577 arma::rowvec bestIndicesMap = arma::zeros<arma::rowvec>(bestIndices.size());
max@1 1578 for (unsigned i=0; i<bestIndices.size(); ++i)
max@1 1579 if (bestIndices(i)>0)
max@1 1580 bestIndicesMap(i) = 1;
max@1 1581
max@1 1582 arma::rowvec mask = arma::zeros<arma::rowvec>(bestLength*2-1);
max@1 1583 for (unsigned i=0; i<bestLength; ++i)
max@1 1584 mask(i+bestLength-1) = 1;
max@1 1585
max@1 1586 arma::rowvec t2 = arma::conv(bestIndicesMap,mask);
max@1 1587 arma::rowvec island = t2.subvec(mask.size()/2,t2.size()-1-mask.size()/2);
max@1 1588
max@1 1589 // Save results in the structure
max@1 1590 Part newPart;
max@1 1591 newPart.n = bestLength;
max@1 1592 uvec q1 = find(bestIndices > 0);
max@1 1593
max@1 1594 for (unsigned i=0; i<q1.size();++i)
max@1 1595 newPart.indices.push_back(q1(i));
max@1 1596
max@1 1597 newPart.letter = partletters[kSeg];
max@1 1598 newPart.value = partvalues[kSeg];
max@1 1599 newPart.level = kSeg+1;
max@1 1600 parts.push_back(newPart);
max@1 1601
max@1 1602 uvec q2 = find(valid_sets==1);
max@1 1603
max@1 1604 for (unsigned i=0; i<q2.size(); ++i)
max@1 1605 {
max@1 1606 unsigned iSet = q2(i);
max@1 1607 unsigned s = partlengths(bestval2(iSet,1));
max@1 1608
max@1 1609 arma::rowvec mask1 = arma::zeros<arma::rowvec>(s*2-1);
max@1 1610 for (unsigned i=0; i<s; ++i)
max@1 1611 mask1(i+s-1) = 1;
max@1 1612
max@1 1613 arma::rowvec Ind = decisionArray2.slice(bestval2(iSet,1))(bestval2(iSet,2),span::all);
max@1 1614 arma::rowvec IndMap = arma::zeros<arma::rowvec>(Ind.size());
max@1 1615 for (unsigned i=0; i<Ind.size(); ++i)
max@1 1616 if (Ind(i)>0)
max@1 1617 IndMap(i) = 2;
max@1 1618
max@1 1619 arma::rowvec t3 = arma::conv(IndMap,mask1);
max@6 1620 arma::rowvec currislands = t3.subvec(mask1.size()/2,t3.size()-1-mask1.size()/2);
max@1 1621 arma::rowvec islandsdMult = currislands%island;
max@6 1622
max@1 1623 arma::uvec islandsIndex = find(islandsdMult > 0);
max@1 1624
max@6 1625 if (islandsIndex.size() > 0)
max@1 1626 valid_sets(iSet) = 0;
max@1 1627 }
max@1 1628 }
max@1 1629 }
max@1 1630 else
max@1 1631 {
max@1 1632 Part newPart;
max@1 1633 newPart.n = nBeat;
max@1 1634 newPart.indices.push_back(1);
max@1 1635 newPart.letter = 'A';
max@1 1636 newPart.value = 1;
max@1 1637 newPart.level = 1;
max@1 1638 parts.push_back(newPart);
max@1 1639 }
max@6 1640
max@1 1641 arma::vec bar = linspace(1,nBeat,nBeat);
max@1 1642 Part np = nullpart(parts,bar);
max@7 1643
max@1 1644 parts.push_back(np);
max@1 1645
max@1 1646 // -------------- NOT CONVERTED -------------------------------------
max@1 1647 // if param.seg.editor
max@1 1648 // [pa, ta] = partarray(parts);
max@1 1649 // parts = editorssearch(pa, ta, parts);
max@1 1650 // parts = [parts, nullpart(parts,1:nBeat)];
max@1 1651 // end
max@1 1652 // ------------------------------------------------------------------
max@1 1653
max@1 1654
max@1 1655 mergenulls(parts);
max@1 1656
max@1 1657
max@1 1658 // -------------- NOT CONVERTED -------------------------------------
max@1 1659 // if param.seg.editor
max@1 1660 // [pa, ta] = partarray(parts);
max@1 1661 // parts = editorssearch(pa, ta, parts);
max@1 1662 // parts = [parts, nullpart(parts,1:nBeat)];
max@1 1663 // end
max@1 1664 // ------------------------------------------------------------------
max@1 1665
max@1 1666 return parts;
max@1 1667 }
max@1 1668
max@1 1669
max@1 1670
max@1 1671 void songSegmentChroma(Vamp::Plugin::FeatureList quatisedChromagram, vector<Part> &parts)
max@1 1672 {
max@1 1673 // Collect Info
max@1 1674 int nBeat = quatisedChromagram.size(); // Number of feature vector
max@1 1675 int nFeatValues = quatisedChromagram[0].values.size(); // Number of values for each feature vector
max@1 1676
max@1 1677 arma::mat synchTreble = arma::zeros<mat>(nBeat,nFeatValues/2);
max@1 1678
max@1 1679 for (unsigned i = 0; i < nBeat; ++ i)
max@1 1680 for (unsigned j = 0; j < nFeatValues/2; ++ j)
max@1 1681 {
max@1 1682 synchTreble(i,j) = quatisedChromagram[i].values[j];
max@1 1683 }
max@1 1684
max@1 1685 arma::mat synchBass = arma::zeros<mat>(nBeat,nFeatValues/2);
max@1 1686
max@1 1687 for (unsigned i = 0; i < nBeat; ++ i)
max@1 1688 for (unsigned j = 0; j < nFeatValues/2; ++ j)
max@1 1689 {
max@1 1690 synchBass(i,j) = quatisedChromagram[i].values[j+12];
max@1 1691 }
max@1 1692
max@1 1693 // Process
max@1 1694
max@1 1695 arma::mat segTreble = arma::zeros<arma::mat>(quatisedChromagram.size(),quatisedChromagram[0].values.size()/2);
max@1 1696 arma::mat segBass = arma::zeros<arma::mat>(quatisedChromagram.size(),quatisedChromagram[0].values.size()/2);
max@1 1697
max@1 1698 for (unsigned iPart=0; iPart<parts.size(); ++iPart)
max@1 1699 {
max@1 1700 parts[iPart].nInd = parts[iPart].indices.size();
max@1 1701
max@1 1702 for (unsigned kOccur=0; kOccur<parts[iPart].nInd; ++kOccur)
max@1 1703 {
max@1 1704 int kStartIndex = parts[iPart].indices[kOccur];
max@1 1705 int kEndIndex = kStartIndex + parts[iPart].n-1;
max@1 1706
max@1 1707 segTreble.rows(kStartIndex,kEndIndex) = segTreble.rows(kStartIndex,kEndIndex) + synchTreble.rows(kStartIndex,kEndIndex);
max@1 1708 segBass.rows(kStartIndex,kEndIndex) = segBass.rows(kStartIndex,kEndIndex) + synchBass.rows(kStartIndex,kEndIndex);
max@1 1709 }
max@1 1710 }
max@1 1711 }
max@1 1712
max@1 1713
max@1 1714 // Segment Integration
max@1 1715 vector<Part> songSegmentIntegration(vector<Part> &parts)
max@1 1716 {
max@1 1717 // Break up parts (every part will have one instance)
max@1 1718 vector<Part> newPartVector;
max@1 1719 vector<int> partindices;
max@1 1720
max@1 1721 for (unsigned iPart=0; iPart<parts.size(); ++iPart)
max@1 1722 {
max@1 1723 parts[iPart].nInd = parts[iPart].indices.size();
max@1 1724 for (unsigned iInstance=0; iInstance<parts[iPart].nInd; ++iInstance)
max@1 1725 {
max@1 1726 Part newPart;
max@1 1727 newPart.n = parts[iPart].n;
max@1 1728 newPart.letter = parts[iPart].letter;
max@1 1729 newPart.value = parts[iPart].value;
max@1 1730 newPart.level = parts[iPart].level;
max@1 1731 newPart.indices.push_back(parts[iPart].indices[iInstance]);
max@1 1732 newPart.nInd = 1;
max@1 1733 partindices.push_back(parts[iPart].indices[iInstance]);
max@1 1734
max@1 1735 newPartVector.push_back(newPart);
max@1 1736 }
max@1 1737 }
max@1 1738
max@1 1739
max@1 1740 // Sort the parts in order of occurrence
max@1 1741 sort (partindices.begin(), partindices.end());
max@1 1742
max@1 1743 for (unsigned i=0; i<partindices.size(); ++i)
max@1 1744 {
max@1 1745 bool found = false;
max@1 1746 int in=0;
max@1 1747 while (!found)
max@1 1748 {
max@1 1749 if (newPartVector[in].indices[0] == partindices[i])
max@1 1750 {
max@1 1751 newPartVector.push_back(newPartVector[in]);
max@1 1752 newPartVector.erase(newPartVector.begin()+in);
max@1 1753 found = true;
max@1 1754 }
max@1 1755 else
max@1 1756 in++;
max@1 1757 }
max@1 1758 }
max@1 1759
max@1 1760 // Clear the vector
max@1 1761 for (unsigned iNewpart=1; iNewpart < newPartVector.size(); ++iNewpart)
max@1 1762 {
max@1 1763 if (newPartVector[iNewpart].n < 12)
max@1 1764 {
max@1 1765 newPartVector[iNewpart-1].n = newPartVector[iNewpart-1].n + newPartVector[iNewpart].n;
max@1 1766 newPartVector.erase(newPartVector.begin()+iNewpart);
max@1 1767 }
max@1 1768 }
max@1 1769
max@1 1770 return newPartVector;
max@1 1771 }
max@1 1772
max@1 1773 // Segmenter
max@1 1774 Vamp::Plugin::FeatureList SongPartitioner::Segmenter(Vamp::Plugin::FeatureList quatisedChromagram)
max@1 1775 {
max@1 1776 /* --- Display Information --- */
max@1 1777 int numBeat = quatisedChromagram.size();
max@1 1778 int numFeats = quatisedChromagram[0].values.size();
max@1 1779
max@1 1780 vector<Part> parts;
max@1 1781 vector<Part> finalParts;
max@1 1782
max@1 1783 parts = songSegment(quatisedChromagram);
max@1 1784 songSegmentChroma(quatisedChromagram,parts);
max@7 1785
max@1 1786 finalParts = songSegmentIntegration(parts);
max@1 1787
max@1 1788
max@1 1789 // TEMP ----
max@6 1790 /*for (unsigned i=0;i<finalParts.size(); ++i)
max@1 1791 {
max@6 1792 std::cout << "Parts n° " << i << std::endl;
max@6 1793 std::cout << "n°: " << finalParts[i].n << std::endl;
max@6 1794 std::cout << "letter: " << finalParts[i].letter << std::endl;
max@1 1795
max@6 1796 std::cout << "indices: ";
max@6 1797 for (unsigned j=0;j<finalParts[i].indices.size(); ++j)
max@6 1798 std::cout << finalParts[i].indices[j] << " ";
max@6 1799
max@6 1800 std::cout << std::endl;
max@6 1801 std::cout << "level: " << finalParts[i].level << std::endl;
max@1 1802 }*/
max@1 1803
max@1 1804 // ---------
max@1 1805
max@1 1806
max@1 1807 // Output
max@1 1808
max@1 1809 Vamp::Plugin::FeatureList results;
max@1 1810
max@1 1811
max@1 1812 Feature seg;
max@1 1813
max@1 1814 arma::vec indices;
max@1 1815 unsigned idx=0;
max@1 1816 vector<int> values;
max@1 1817 vector<string> letters;
max@1 1818
max@1 1819 for (unsigned iPart=0; iPart<finalParts.size()-1; ++iPart)
max@1 1820 {
max@1 1821 unsigned iInstance=0;
max@1 1822 seg.hasTimestamp = true;
max@1 1823
max@1 1824 int ind = finalParts[iPart].indices[iInstance];
max@1 1825 int ind1 = finalParts[iPart+1].indices[iInstance];
max@1 1826
max@1 1827 seg.timestamp = quatisedChromagram[ind].timestamp;
max@1 1828 seg.hasDuration = true;
max@1 1829 seg.duration = quatisedChromagram[ind1].timestamp-quatisedChromagram[ind].timestamp;
max@1 1830 seg.values.clear();
max@1 1831 seg.values.push_back(finalParts[iPart].value);
max@1 1832 seg.label = finalParts[iPart].letter;
max@1 1833
max@1 1834 results.push_back(seg);
max@1 1835 }
max@1 1836
max@1 1837 int ind = finalParts[finalParts.size()-1].indices[0];
max@1 1838 seg.timestamp = quatisedChromagram[ind].timestamp;
max@1 1839 seg.hasDuration = true;
max@1 1840 seg.duration = quatisedChromagram[quatisedChromagram.size()-1].timestamp-quatisedChromagram[ind].timestamp;
max@1 1841 seg.values.clear();
max@1 1842 seg.values.push_back(finalParts[finalParts.size()-1].value);
max@1 1843 seg.label = finalParts[finalParts.size()-1].letter;
max@1 1844
max@1 1845 results.push_back(seg);
max@1 1846
max@1 1847 return results;
max@1 1848 }
max@1 1849
max@1 1850
max@1 1851
max@1 1852
max@1 1853
max@1 1854
max@1 1855
max@1 1856
max@1 1857
max@1 1858
max@1 1859
max@1 1860
max@1 1861
max@1 1862
max@1 1863
max@1 1864
max@1 1865