mi@0
|
1 #!/usr/bin/env python
|
mi@0
|
2 # encoding: utf-8
|
mi@0
|
3 """
|
mi@0
|
4 SegProperties.py
|
mi@0
|
5
|
mi@0
|
6 Created by mi tian on 2015-04-02.
|
mi@0
|
7 Copyright (c) 2015 __MyCompanyName__. All rights reserved.
|
mi@0
|
8 """
|
mi@0
|
9
|
mi@0
|
10 import sys
|
mi@0
|
11 import os
|
mi@0
|
12
|
mi@0
|
13 class FeatureGMM(object):
|
mi@0
|
14 '''Represent segment candidates using single GMMs and compute pairwise distances.'''
|
mi@0
|
15 def getGaussianParams(self, length, featureRate, timeWindow):
|
mi@0
|
16
|
mi@0
|
17 win_len = round(timeWindow * featureRate)
|
mi@0
|
18 win_len = win_len + (win_len % 2) - 1
|
mi@0
|
19
|
mi@0
|
20 # a 50% overlap between windows
|
mi@0
|
21 stepsize = ceil(win_len * 0.5)
|
mi@0
|
22 num_win = int(floor( (length) / stepsize))
|
mi@0
|
23 gaussian_rate = featureRate / stepsize
|
mi@0
|
24
|
mi@0
|
25 return stepsize, num_win, win_len, gaussian_rate
|
mi@0
|
26
|
mi@0
|
27 def GaussianDistance(self, feature, featureRate, timeWindow):
|
mi@0
|
28
|
mi@0
|
29 stepsize, num_win, win_len, gr = self.getGaussianParams(feature.shape[0], featureRate, timeWindow)
|
mi@0
|
30 print 'stepsize, num_win, feature', stepsize, num_win, feature.shape, featureRate, timeWindow
|
mi@0
|
31 gaussian_list = []
|
mi@0
|
32 gaussian_timestamps = []
|
mi@0
|
33 tsi = 0
|
mi@0
|
34
|
mi@0
|
35 # f = open('/Users/mitian/Documents/experiments/features.txt','w')
|
mi@0
|
36 # print 'divergence computing..'
|
mi@0
|
37 for num in xrange(num_win):
|
mi@0
|
38 # print num, num * stepsize , (num * stepsize) + win_len
|
mi@0
|
39 gf=GaussianFeature(feature[int(num * stepsize) : int((num * stepsize) + win_len), :],2)
|
mi@0
|
40 # f.write("\n%s" %str(gf))
|
mi@0
|
41 gaussian_list.append(gf)
|
mi@0
|
42 tsi = int(floor( num * stepsize + 1))
|
mi@0
|
43 gaussian_timestamps.append(self.timestamp[tsi])
|
mi@0
|
44
|
mi@0
|
45 # f.close()
|
mi@0
|
46
|
mi@0
|
47 # print 'gaussian_list', len(gaussian_list), len(gaussian_timestamps)
|
mi@0
|
48 dm = np.zeros((len(gaussian_list), len(gaussian_list)))
|
mi@0
|
49
|
mi@0
|
50 for v1, v2 in combinations(gaussian_list, 2):
|
mi@0
|
51 i, j = gaussian_list.index(v1), gaussian_list.index(v2)
|
mi@0
|
52 dm[i, j] = v1.distance(v2)
|
mi@0
|
53 dm[j, i] = v2.distance(v1)
|
mi@0
|
54 # print 'dm[i,j]',dm[i,j]
|
mi@0
|
55 # sio.savemat("/Users/mitian/Documents/experiments/dm-from-segmenter.mat",{"dm":dm})
|
mi@0
|
56 return dm, gaussian_timestamps
|
mi@0
|
57
|
mi@0
|
58 def getGMMs(self, feature, segment_boundaries):
|
mi@0
|
59 '''Return GMMs for located segments'''
|
mi@0
|
60 gmm_list = []
|
mi@0
|
61 gmm_list.append(GmmDistance(feature[: segment_boundaries[0], :], components = 1))
|
mi@0
|
62 for i in xrange(1, len(segment_boundaries)):
|
mi@0
|
63 gmm_list.append(GmmDistance(feature[segment_boundaries[i-1] : segment_boundaries[i], :], components = 1))
|
mi@0
|
64 return gmm_list
|
mi@0
|
65
|
mi@0
|
66
|
mi@0
|
67 class FusedPeakSelection(object):
|
mi@0
|
68 '''Peak selection from fusion of individual results.'''
|
mi@0
|
69 def getFusedPeaks(self, combined_thresh, individual_thresh, individual_tol, combined_tol, w1=None, w2=None, w3=None, w4=None):
|
mi@0
|
70 '''Return a list a peak position and the corresponding confidence.'''
|
mi@0
|
71 confidence_array = np.zeros_like(w1)
|
mi@0
|
72 conf1 = np.zeros_like(w1)
|
mi@0
|
73 len_arr = len(w1)
|
mi@0
|
74
|
mi@0
|
75 # keep peaks retrieved by single feature if its confidence is above individual_thresh
|
mi@0
|
76 w1_keep = np.where(w1>=individual_thresh)[0]
|
mi@0
|
77 w2_keep = np.where(w2>=individual_thresh)[0]
|
mi@0
|
78 w3_keep = np.where(w3>=individual_thresh)[0]
|
mi@0
|
79 w4_keep = np.where(w4>=individual_thresh)[0]
|
mi@0
|
80 confidence_array[w1_keep] += w1[w1_keep]
|
mi@0
|
81 confidence_array[w2_keep] += w2[w2_keep]
|
mi@0
|
82 confidence_array[w3_keep] += w3[w3_keep]
|
mi@0
|
83 confidence_array[w4_keep] += w4[w4_keep]
|
mi@0
|
84
|
mi@0
|
85 confidence_array[confidence_array>1] = 1
|
mi@0
|
86
|
mi@0
|
87 # deal with peaks picked individual features with high confidence first
|
mi@0
|
88 i=0
|
mi@0
|
89 while i < len_arr:
|
mi@0
|
90 if confidence_array[i] > 0:
|
mi@0
|
91 temp = [confidence_array[i]]
|
mi@0
|
92 pos = [i]
|
mi@0
|
93 i += 1
|
mi@0
|
94
|
mi@0
|
95 # start searching neighborhood for local maximum
|
mi@0
|
96 while (i+individual_tol < len_arr and np.max(confidence_array[i:i+individual_tol]) > 0):
|
mi@0
|
97 temp += [confidence_array[i+delta] for delta in xrange(individual_tol) if confidence_array[i+delta]>0]
|
mi@0
|
98 pos += [i+delta for delta in xrange(individual_tol) if confidence_array[i+delta]>0]
|
mi@0
|
99 i += individual_tol
|
mi@0
|
100
|
mi@0
|
101 if len(temp) == 1:
|
mi@0
|
102 conf1[pos[0]] = temp[0]
|
mi@0
|
103 else:
|
mi@0
|
104 # p = int(np.rint(np.sum(np.multiply(pos,temp))/ np.sum(temp)))
|
mi@0
|
105 # conf1[p] = 1
|
mi@0
|
106 p = int(np.mean(pos))
|
mi@0
|
107 conf1[p] = np.mean(temp)
|
mi@0
|
108 else:
|
mi@0
|
109 i += 1
|
mi@0
|
110 conf1[conf1>1] = 1
|
mi@0
|
111
|
mi@0
|
112 # Process peaks with low confidence but located by multiple features in the same neighborhood
|
mi@0
|
113 # conf2 = copy(conf1)
|
mi@0
|
114 conf2 = np.zeros_like(conf1)
|
mi@0
|
115 weight1, weight2, weight3, weight4 = copy(w1), copy(w2), copy(w3), copy(w4)
|
mi@0
|
116 weight1[weight1>individual_thresh] = 0.0
|
mi@0
|
117 weight2[weight2>individual_thresh] = 0.0
|
mi@0
|
118 weight3[weight3>individual_thresh] = 0.0
|
mi@0
|
119 weight4[weight4>individual_thresh] = 0.0
|
mi@0
|
120 combined = weight1 + weight2 + weight3 + weight4
|
mi@0
|
121 combined = (combined - np.min(combined)) / (np.max(combined) - np.min(combined))
|
mi@0
|
122 if combined[0]>0.3: combined[0] = 0.8
|
mi@0
|
123
|
mi@0
|
124 i = 0
|
mi@0
|
125 while i < len_arr:
|
mi@0
|
126 if combined[i] > 0:
|
mi@0
|
127 temp = [combined[i]]
|
mi@0
|
128 pos = [i]
|
mi@0
|
129 i += 1
|
mi@0
|
130
|
mi@0
|
131 # start searching neighborhood for local maximum
|
mi@0
|
132 while (i+combined_tol < len_arr and np.max(combined[i:i+combined_tol]) > 0):
|
mi@0
|
133 temp += [combined[i+delta] for delta in xrange(combined_tol) if combined[i+delta]>0]
|
mi@0
|
134 pos += [i+delta for delta in xrange(combined_tol) if combined[i+delta]>0]
|
mi@0
|
135 i += combined_tol
|
mi@0
|
136
|
mi@0
|
137 if len(temp) == 1:
|
mi@0
|
138 conf2[pos[0]] += temp[0]
|
mi@0
|
139 else:
|
mi@0
|
140 p = int(np.rint(np.sum(np.multiply(pos,temp))/ np.sum(temp)))
|
mi@0
|
141 conf2[p] += np.sum(np.multiply(pos,temp)) / p
|
mi@0
|
142 else:
|
mi@0
|
143 i += 1
|
mi@0
|
144
|
mi@0
|
145 conf2[conf2<combined_thresh] = 0
|
mi@0
|
146 conf2[conf2>1] = 1
|
mi@0
|
147
|
mi@0
|
148 combined_conf = conf1 + conf2
|
mi@0
|
149 combined_conf[combined_conf>1] = 1
|
mi@0
|
150 conf = np.zeros_like(combined_conf)
|
mi@0
|
151 # Combine selections from the obove two steps
|
mi@0
|
152 i=0
|
mi@0
|
153 while i < len_arr:
|
mi@0
|
154 if combined_conf[i] > 0.3:
|
mi@0
|
155 temp = [combined_conf[i]]
|
mi@0
|
156 pos = [i]
|
mi@0
|
157 i += 1
|
mi@0
|
158
|
mi@0
|
159 # start searching neighborhood for local maximum
|
mi@0
|
160 while (i+individual_tol < len_arr and np.max(combined_conf[i:i+individual_tol]) > 0.5):
|
mi@0
|
161 temp += [combined_conf[i+delta] for delta in xrange(individual_tol) if combined_conf[i+delta]>0.5]
|
mi@0
|
162 pos += [i+delta for delta in xrange(individual_tol) if combined_conf[i+delta]>0.5]
|
mi@0
|
163 i += individual_tol
|
mi@0
|
164
|
mi@0
|
165 if len(temp) == 1:
|
mi@0
|
166 conf[pos[0]] = combined_conf[pos[0]]
|
mi@0
|
167 elif (np.max(temp)== 1 and np.sort(temp)[-2] < combined_thresh):
|
mi@0
|
168 p = pos[np.argmax(temp)]
|
mi@0
|
169 conf[p] = np.max(temp)
|
mi@0
|
170 else:
|
mi@0
|
171 p = int(np.rint(np.sum(np.multiply(pos,temp))/ np.sum(temp)))
|
mi@0
|
172 conf[p] = np.mean(np.multiply(pos,temp)) / p
|
mi@0
|
173 else:
|
mi@0
|
174 i += 1
|
mi@0
|
175
|
mi@0
|
176 peaks = list(np.where(conf>combined_thresh)[0])
|
mi@0
|
177 return peaks, conf1, conf2, conf
|
mi@0
|
178
|
mi@0
|
179 def getPeakWeights(self, sdf, peak_list):
|
mi@0
|
180 '''Compute peak confidence.
|
mi@0
|
181 Return: array with confidence values at peak positions and zeros otherwise'''
|
mi@0
|
182 mask = np.zeros_like(sdf)
|
mi@0
|
183 mask[peak_list] = 1.0
|
mi@0
|
184 return sdf * mask
|
mi@0
|
185
|
mi@0
|
186 def selectPeak(self, peak_candidates, featureset, winlen=5):
|
mi@0
|
187 dist_list = []
|
mi@0
|
188 feature_types = len(featureset)
|
mi@0
|
189 gt_dist, hm_dist, tb_dist, tp_dist = [], [], [], []
|
mi@0
|
190
|
mi@0
|
191 for idx, x in enumerate(peak_candidates):
|
mi@0
|
192 prev_features = tuple([featureset[i][x-winlen:x, :] for i in xrange(feature_types)])
|
mi@0
|
193 post_features = tuple([featureset[i][x:x+winlen, :] for i in xrange(feature_types)])
|
mi@0
|
194 gt_dist.append(np.sum(pairwise_distances(prev_features[0], post_features[0])))
|
mi@0
|
195 hm_dist.append(np.sum(pairwise_distances(prev_features[1], post_features[1])))
|
mi@0
|
196 tb_dist.append(np.sum(pairwise_distances(prev_features[2], post_features[2])))
|
mi@0
|
197 tp_dist.append(np.sum(pairwise_distances(prev_features[3], post_features[3])))
|
mi@0
|
198
|
mi@0
|
199 return peak_candidates[np.argmax(gt_dist)], peak_candidates[np.argmax(hm_dist)], peak_candidates[np.argmax(tb_dist)], peak_candidates[np.argmax(tp_dist)]
|
mi@0
|
200
|
mi@0
|
201 def getPeakFeatures(self, peak_candidates, featureset, winlen):
|
mi@0
|
202 '''
|
mi@0
|
203 args: winlen: length of feature window before and after an investigated peak
|
mi@0
|
204 featureset: A list of audio features for measuring the dissimilarity.
|
mi@0
|
205
|
mi@0
|
206 return: peak_features
|
mi@0
|
207 A list of tuples of features for windows before and after each peak.
|
mi@0
|
208 '''
|
mi@0
|
209 prev_features = []
|
mi@0
|
210 post_features = []
|
mi@0
|
211 feature_types = len(featureset)
|
mi@0
|
212
|
mi@0
|
213 # print peak_candidates[-1], winlen, featureset[0].shape
|
mi@0
|
214 # if peak_candidates[-1] + winlen > featureset[0].shape[0]:
|
mi@0
|
215 # peak_candidates = peak_candidates[:-1]
|
mi@0
|
216 # for x in peak_candidates:
|
mi@0
|
217 # prev_features.append(tuple([featureset[i][x-winlen:x, :] for i in xrange(feature_types)]))
|
mi@0
|
218 # post_features.append(tuple([featureset[i][x:x+winlen, :] for i in xrange(feature_types)]))
|
mi@0
|
219 prev_features.append(tuple([featureset[i][:peak_candidates[0], :] for i in xrange(feature_types)]))
|
mi@0
|
220 post_features.append(tuple([featureset[i][peak_candidates[0]:peak_candidates[1], :] for i in xrange(feature_types)]))
|
mi@0
|
221 for idx in xrange(1, len(peak_candidates)-1):
|
mi@0
|
222 prev_features.append(tuple([featureset[i][peak_candidates[idx-1]:peak_candidates[idx], :] for i in xrange(feature_types)]))
|
mi@0
|
223 post_features.append(tuple([featureset[i][peak_candidates[idx]:peak_candidates[idx+1], :] for i in xrange(feature_types)]))
|
mi@0
|
224 prev_features.append(tuple([featureset[i][peak_candidates[-2]:peak_candidates[-1], :] for i in xrange(feature_types)]))
|
mi@0
|
225 post_features.append(tuple([featureset[i][peak_candidates[-1]:, :] for i in xrange(feature_types)]))
|
mi@0
|
226 return prev_features, post_features
|
mi@0
|
227
|
mi@0
|
228 def segStats(self, feature_array, boundary_list):
|
mi@0
|
229 '''Return some basic stats of features associated with two boundaries.'''
|
mi@0
|
230 feature_stats = []
|
mi@0
|
231 for i in xrange(1, len(boundary_list)):
|
mi@0
|
232 feature_stats.append(np.std(feature_array[boundary_list[i-1]:boundary_list[i]], axis=0))
|
mi@0
|
233 return feature_stats
|
mi@0
|
234
|
mi@0
|
235 def segmentDev(self, prev_features, post_features, metric='kl'):
|
mi@0
|
236 '''Deviations are measured for each given feature type.
|
mi@0
|
237 peak_candidates: peaks from the 1st round detection
|
mi@0
|
238 peak_features: Features for measuring the dissimilarity for parts before and after each peak.
|
mi@0
|
239 dtype: tuple.
|
mi@0
|
240 '''
|
mi@0
|
241 dev_list = []
|
mi@0
|
242 n_peaks = len(prev_features)
|
mi@0
|
243 n_features = len(prev_features[0])
|
mi@0
|
244 # print 'n_peaks, n_features', n_peaks, n_features
|
mi@0
|
245 if metric == 'kl':
|
mi@0
|
246 for x in xrange(n_peaks):
|
mi@0
|
247 f1, f2 = prev_features[x], post_features[x]
|
mi@0
|
248 dev_list.append(tuple([GmmDistance(f1[i], components=1).skl_distance_full(GmmDistance(f2[i], components=1)) for i in xrange(n_features)]))
|
mi@0
|
249 elif metric == 'euclidean':
|
mi@0
|
250 for x in xrange(n_peaks):
|
mi@0
|
251 f1, f2 = prev_features[x], post_features[x]
|
mi@0
|
252 dev_list.append(tuple([pairwise_distances(f1[i], f2[i]) for i in xrange(n_features)]))
|
mi@0
|
253 return dev_list
|
mi@0
|
254
|
mi@0
|
255 def main():
|
mi@0
|
256 pass
|
mi@0
|
257
|
mi@0
|
258
|
mi@0
|
259 if __name__ == '__main__':
|
mi@0
|
260 main()
|
mi@0
|
261
|