comparison utils/SegProperties.py @ 0:26838b1f560f

initial commit of a segmenter project
author mi tian
date Thu, 02 Apr 2015 18:09:27 +0100
parents
children c11ea9e0357f
comparison
equal deleted inserted replaced
-1:000000000000 0:26838b1f560f
1 #!/usr/bin/env python
2 # encoding: utf-8
3 """
4 SegProperties.py
5
6 Created by mi tian on 2015-04-02.
7 Copyright (c) 2015 __MyCompanyName__. All rights reserved.
8 """
9
10 import sys
11 import os
12
13 class FeatureGMM(object):
14 '''Represent segment candidates using single GMMs and compute pairwise distances.'''
15 def getGaussianParams(self, length, featureRate, timeWindow):
16
17 win_len = round(timeWindow * featureRate)
18 win_len = win_len + (win_len % 2) - 1
19
20 # a 50% overlap between windows
21 stepsize = ceil(win_len * 0.5)
22 num_win = int(floor( (length) / stepsize))
23 gaussian_rate = featureRate / stepsize
24
25 return stepsize, num_win, win_len, gaussian_rate
26
27 def GaussianDistance(self, feature, featureRate, timeWindow):
28
29 stepsize, num_win, win_len, gr = self.getGaussianParams(feature.shape[0], featureRate, timeWindow)
30 print 'stepsize, num_win, feature', stepsize, num_win, feature.shape, featureRate, timeWindow
31 gaussian_list = []
32 gaussian_timestamps = []
33 tsi = 0
34
35 # f = open('/Users/mitian/Documents/experiments/features.txt','w')
36 # print 'divergence computing..'
37 for num in xrange(num_win):
38 # print num, num * stepsize , (num * stepsize) + win_len
39 gf=GaussianFeature(feature[int(num * stepsize) : int((num * stepsize) + win_len), :],2)
40 # f.write("\n%s" %str(gf))
41 gaussian_list.append(gf)
42 tsi = int(floor( num * stepsize + 1))
43 gaussian_timestamps.append(self.timestamp[tsi])
44
45 # f.close()
46
47 # print 'gaussian_list', len(gaussian_list), len(gaussian_timestamps)
48 dm = np.zeros((len(gaussian_list), len(gaussian_list)))
49
50 for v1, v2 in combinations(gaussian_list, 2):
51 i, j = gaussian_list.index(v1), gaussian_list.index(v2)
52 dm[i, j] = v1.distance(v2)
53 dm[j, i] = v2.distance(v1)
54 # print 'dm[i,j]',dm[i,j]
55 # sio.savemat("/Users/mitian/Documents/experiments/dm-from-segmenter.mat",{"dm":dm})
56 return dm, gaussian_timestamps
57
58 def getGMMs(self, feature, segment_boundaries):
59 '''Return GMMs for located segments'''
60 gmm_list = []
61 gmm_list.append(GmmDistance(feature[: segment_boundaries[0], :], components = 1))
62 for i in xrange(1, len(segment_boundaries)):
63 gmm_list.append(GmmDistance(feature[segment_boundaries[i-1] : segment_boundaries[i], :], components = 1))
64 return gmm_list
65
66
67 class FusedPeakSelection(object):
68 '''Peak selection from fusion of individual results.'''
69 def getFusedPeaks(self, combined_thresh, individual_thresh, individual_tol, combined_tol, w1=None, w2=None, w3=None, w4=None):
70 '''Return a list a peak position and the corresponding confidence.'''
71 confidence_array = np.zeros_like(w1)
72 conf1 = np.zeros_like(w1)
73 len_arr = len(w1)
74
75 # keep peaks retrieved by single feature if its confidence is above individual_thresh
76 w1_keep = np.where(w1>=individual_thresh)[0]
77 w2_keep = np.where(w2>=individual_thresh)[0]
78 w3_keep = np.where(w3>=individual_thresh)[0]
79 w4_keep = np.where(w4>=individual_thresh)[0]
80 confidence_array[w1_keep] += w1[w1_keep]
81 confidence_array[w2_keep] += w2[w2_keep]
82 confidence_array[w3_keep] += w3[w3_keep]
83 confidence_array[w4_keep] += w4[w4_keep]
84
85 confidence_array[confidence_array>1] = 1
86
87 # deal with peaks picked individual features with high confidence first
88 i=0
89 while i < len_arr:
90 if confidence_array[i] > 0:
91 temp = [confidence_array[i]]
92 pos = [i]
93 i += 1
94
95 # start searching neighborhood for local maximum
96 while (i+individual_tol < len_arr and np.max(confidence_array[i:i+individual_tol]) > 0):
97 temp += [confidence_array[i+delta] for delta in xrange(individual_tol) if confidence_array[i+delta]>0]
98 pos += [i+delta for delta in xrange(individual_tol) if confidence_array[i+delta]>0]
99 i += individual_tol
100
101 if len(temp) == 1:
102 conf1[pos[0]] = temp[0]
103 else:
104 # p = int(np.rint(np.sum(np.multiply(pos,temp))/ np.sum(temp)))
105 # conf1[p] = 1
106 p = int(np.mean(pos))
107 conf1[p] = np.mean(temp)
108 else:
109 i += 1
110 conf1[conf1>1] = 1
111
112 # Process peaks with low confidence but located by multiple features in the same neighborhood
113 # conf2 = copy(conf1)
114 conf2 = np.zeros_like(conf1)
115 weight1, weight2, weight3, weight4 = copy(w1), copy(w2), copy(w3), copy(w4)
116 weight1[weight1>individual_thresh] = 0.0
117 weight2[weight2>individual_thresh] = 0.0
118 weight3[weight3>individual_thresh] = 0.0
119 weight4[weight4>individual_thresh] = 0.0
120 combined = weight1 + weight2 + weight3 + weight4
121 combined = (combined - np.min(combined)) / (np.max(combined) - np.min(combined))
122 if combined[0]>0.3: combined[0] = 0.8
123
124 i = 0
125 while i < len_arr:
126 if combined[i] > 0:
127 temp = [combined[i]]
128 pos = [i]
129 i += 1
130
131 # start searching neighborhood for local maximum
132 while (i+combined_tol < len_arr and np.max(combined[i:i+combined_tol]) > 0):
133 temp += [combined[i+delta] for delta in xrange(combined_tol) if combined[i+delta]>0]
134 pos += [i+delta for delta in xrange(combined_tol) if combined[i+delta]>0]
135 i += combined_tol
136
137 if len(temp) == 1:
138 conf2[pos[0]] += temp[0]
139 else:
140 p = int(np.rint(np.sum(np.multiply(pos,temp))/ np.sum(temp)))
141 conf2[p] += np.sum(np.multiply(pos,temp)) / p
142 else:
143 i += 1
144
145 conf2[conf2<combined_thresh] = 0
146 conf2[conf2>1] = 1
147
148 combined_conf = conf1 + conf2
149 combined_conf[combined_conf>1] = 1
150 conf = np.zeros_like(combined_conf)
151 # Combine selections from the obove two steps
152 i=0
153 while i < len_arr:
154 if combined_conf[i] > 0.3:
155 temp = [combined_conf[i]]
156 pos = [i]
157 i += 1
158
159 # start searching neighborhood for local maximum
160 while (i+individual_tol < len_arr and np.max(combined_conf[i:i+individual_tol]) > 0.5):
161 temp += [combined_conf[i+delta] for delta in xrange(individual_tol) if combined_conf[i+delta]>0.5]
162 pos += [i+delta for delta in xrange(individual_tol) if combined_conf[i+delta]>0.5]
163 i += individual_tol
164
165 if len(temp) == 1:
166 conf[pos[0]] = combined_conf[pos[0]]
167 elif (np.max(temp)== 1 and np.sort(temp)[-2] < combined_thresh):
168 p = pos[np.argmax(temp)]
169 conf[p] = np.max(temp)
170 else:
171 p = int(np.rint(np.sum(np.multiply(pos,temp))/ np.sum(temp)))
172 conf[p] = np.mean(np.multiply(pos,temp)) / p
173 else:
174 i += 1
175
176 peaks = list(np.where(conf>combined_thresh)[0])
177 return peaks, conf1, conf2, conf
178
179 def getPeakWeights(self, sdf, peak_list):
180 '''Compute peak confidence.
181 Return: array with confidence values at peak positions and zeros otherwise'''
182 mask = np.zeros_like(sdf)
183 mask[peak_list] = 1.0
184 return sdf * mask
185
186 def selectPeak(self, peak_candidates, featureset, winlen=5):
187 dist_list = []
188 feature_types = len(featureset)
189 gt_dist, hm_dist, tb_dist, tp_dist = [], [], [], []
190
191 for idx, x in enumerate(peak_candidates):
192 prev_features = tuple([featureset[i][x-winlen:x, :] for i in xrange(feature_types)])
193 post_features = tuple([featureset[i][x:x+winlen, :] for i in xrange(feature_types)])
194 gt_dist.append(np.sum(pairwise_distances(prev_features[0], post_features[0])))
195 hm_dist.append(np.sum(pairwise_distances(prev_features[1], post_features[1])))
196 tb_dist.append(np.sum(pairwise_distances(prev_features[2], post_features[2])))
197 tp_dist.append(np.sum(pairwise_distances(prev_features[3], post_features[3])))
198
199 return peak_candidates[np.argmax(gt_dist)], peak_candidates[np.argmax(hm_dist)], peak_candidates[np.argmax(tb_dist)], peak_candidates[np.argmax(tp_dist)]
200
201 def getPeakFeatures(self, peak_candidates, featureset, winlen):
202 '''
203 args: winlen: length of feature window before and after an investigated peak
204 featureset: A list of audio features for measuring the dissimilarity.
205
206 return: peak_features
207 A list of tuples of features for windows before and after each peak.
208 '''
209 prev_features = []
210 post_features = []
211 feature_types = len(featureset)
212
213 # print peak_candidates[-1], winlen, featureset[0].shape
214 # if peak_candidates[-1] + winlen > featureset[0].shape[0]:
215 # peak_candidates = peak_candidates[:-1]
216 # for x in peak_candidates:
217 # prev_features.append(tuple([featureset[i][x-winlen:x, :] for i in xrange(feature_types)]))
218 # post_features.append(tuple([featureset[i][x:x+winlen, :] for i in xrange(feature_types)]))
219 prev_features.append(tuple([featureset[i][:peak_candidates[0], :] for i in xrange(feature_types)]))
220 post_features.append(tuple([featureset[i][peak_candidates[0]:peak_candidates[1], :] for i in xrange(feature_types)]))
221 for idx in xrange(1, len(peak_candidates)-1):
222 prev_features.append(tuple([featureset[i][peak_candidates[idx-1]:peak_candidates[idx], :] for i in xrange(feature_types)]))
223 post_features.append(tuple([featureset[i][peak_candidates[idx]:peak_candidates[idx+1], :] for i in xrange(feature_types)]))
224 prev_features.append(tuple([featureset[i][peak_candidates[-2]:peak_candidates[-1], :] for i in xrange(feature_types)]))
225 post_features.append(tuple([featureset[i][peak_candidates[-1]:, :] for i in xrange(feature_types)]))
226 return prev_features, post_features
227
228 def segStats(self, feature_array, boundary_list):
229 '''Return some basic stats of features associated with two boundaries.'''
230 feature_stats = []
231 for i in xrange(1, len(boundary_list)):
232 feature_stats.append(np.std(feature_array[boundary_list[i-1]:boundary_list[i]], axis=0))
233 return feature_stats
234
235 def segmentDev(self, prev_features, post_features, metric='kl'):
236 '''Deviations are measured for each given feature type.
237 peak_candidates: peaks from the 1st round detection
238 peak_features: Features for measuring the dissimilarity for parts before and after each peak.
239 dtype: tuple.
240 '''
241 dev_list = []
242 n_peaks = len(prev_features)
243 n_features = len(prev_features[0])
244 # print 'n_peaks, n_features', n_peaks, n_features
245 if metric == 'kl':
246 for x in xrange(n_peaks):
247 f1, f2 = prev_features[x], post_features[x]
248 dev_list.append(tuple([GmmDistance(f1[i], components=1).skl_distance_full(GmmDistance(f2[i], components=1)) for i in xrange(n_features)]))
249 elif metric == 'euclidean':
250 for x in xrange(n_peaks):
251 f1, f2 = prev_features[x], post_features[x]
252 dev_list.append(tuple([pairwise_distances(f1[i], f2[i]) for i in xrange(n_features)]))
253 return dev_list
254
255 def main():
256 pass
257
258
259 if __name__ == '__main__':
260 main()
261