Mercurial > hg > segmentation
view utils/SegProperties.py @ 19:890cfe424f4a tip
added annotations
author | mitian |
---|---|
date | Fri, 11 Dec 2015 09:47:40 +0000 |
parents | c11ea9e0357f |
children |
line wrap: on
line source
#!/usr/bin/env python # encoding: utf-8 """ SegProperties.py Created by mi tian on 2015-04-02. Copyright (c) 2015 __MyCompanyName__. All rights reserved. """ import sys, os import numpy as np from sklearn.metrics.pairwise import pairwise_distances from gmmdist import * from GmmMetrics import GmmDistance class FeatureGMM(object): '''Represent segment candidates using single GMMs and compute pairwise distances.''' def getGaussianParams(self, length, featureRate, timeWindow): win_len = round(timeWindow * featureRate) win_len = win_len + (win_len % 2) - 1 # a 50% overlap between windows stepsize = ceil(win_len * 0.5) num_win = int(floor( (length) / stepsize)) gaussian_rate = featureRate / stepsize return stepsize, num_win, win_len, gaussian_rate def GaussianDistance(self, feature, featureRate, timeWindow): stepsize, num_win, win_len, gr = self.getGaussianParams(feature.shape[0], featureRate, timeWindow) print 'stepsize, num_win, feature', stepsize, num_win, feature.shape, featureRate, timeWindow gaussian_list = [] gaussian_timestamps = [] tsi = 0 # f = open('/Users/mitian/Documents/experiments/features.txt','w') # print 'divergence computing..' for num in xrange(num_win): # print num, num * stepsize , (num * stepsize) + win_len gf=GaussianFeature(feature[int(num * stepsize) : int((num * stepsize) + win_len), :],2) # f.write("\n%s" %str(gf)) gaussian_list.append(gf) tsi = int(np.floor( num * stepsize + 1)) gaussian_timestamps.append(self.timestamp[tsi]) # f.close() # print 'gaussian_list', len(gaussian_list), len(gaussian_timestamps) dm = np.zeros((len(gaussian_list), len(gaussian_list))) for v1, v2 in combinations(gaussian_list, 2): i, j = gaussian_list.index(v1), gaussian_list.index(v2) dm[i, j] = v1.distance(v2) dm[j, i] = v2.distance(v1) # print 'dm[i,j]',dm[i,j] # sio.savemat("/Users/mitian/Documents/experiments/dm-from-segmenter.mat",{"dm":dm}) return dm, gaussian_timestamps def getGMMs(self, feature, segment_boundaries): '''Return GMMs for located segments''' gmm_list = [] gmm_list.append(GmmDistance(feature[: segment_boundaries[0], :], components = 1)) for i in xrange(1, len(segment_boundaries)): gmm_list.append(GmmDistance(feature[segment_boundaries[i-1] : segment_boundaries[i], :], components = 1)) return gmm_list class FusedPeakSelection(object): '''Peak selection from fusion of individual results.''' def getFusedPeaks(self, combined_thresh, individual_thresh, individual_tol, combined_tol, w1=None, w2=None, w3=None, w4=None): '''Return a list a peak position and the corresponding confidence.''' confidence_array = np.zeros_like(w1) conf1 = np.zeros_like(w1) len_arr = len(w1) # keep peaks retrieved by single feature if its confidence is above individual_thresh w1_keep = np.where(w1>=individual_thresh)[0] w2_keep = np.where(w2>=individual_thresh)[0] w3_keep = np.where(w3>=individual_thresh)[0] w4_keep = np.where(w4>=individual_thresh)[0] confidence_array[w1_keep] += w1[w1_keep] confidence_array[w2_keep] += w2[w2_keep] confidence_array[w3_keep] += w3[w3_keep] confidence_array[w4_keep] += w4[w4_keep] confidence_array[confidence_array>1] = 1 # deal with peaks picked individual features with high confidence first i=0 while i < len_arr: if confidence_array[i] > 0: temp = [confidence_array[i]] pos = [i] i += 1 # start searching neighborhood for local maximum while (i+individual_tol < len_arr and np.max(confidence_array[i:i+individual_tol]) > 0): temp += [confidence_array[i+delta] for delta in xrange(individual_tol) if confidence_array[i+delta]>0] pos += [i+delta for delta in xrange(individual_tol) if confidence_array[i+delta]>0] i += individual_tol if len(temp) == 1: conf1[pos[0]] = temp[0] else: # p = int(np.rint(np.sum(np.multiply(pos,temp))/ np.sum(temp))) # conf1[p] = 1 p = int(np.mean(pos)) conf1[p] = np.mean(temp) else: i += 1 conf1[conf1>1] = 1 # Process peaks with low confidence but located by multiple features in the same neighborhood # conf2 = copy(conf1) conf2 = np.zeros_like(conf1) weight1, weight2, weight3, weight4 = copy(w1), copy(w2), copy(w3), copy(w4) weight1[weight1>individual_thresh] = 0.0 weight2[weight2>individual_thresh] = 0.0 weight3[weight3>individual_thresh] = 0.0 weight4[weight4>individual_thresh] = 0.0 combined = weight1 + weight2 + weight3 + weight4 combined = (combined - np.min(combined)) / (np.max(combined) - np.min(combined)) if combined[0]>0.3: combined[0] = 0.8 i = 0 while i < len_arr: if combined[i] > 0: temp = [combined[i]] pos = [i] i += 1 # start searching neighborhood for local maximum while (i+combined_tol < len_arr and np.max(combined[i:i+combined_tol]) > 0): temp += [combined[i+delta] for delta in xrange(combined_tol) if combined[i+delta]>0] pos += [i+delta for delta in xrange(combined_tol) if combined[i+delta]>0] i += combined_tol if len(temp) == 1: conf2[pos[0]] += temp[0] else: p = int(np.rint(np.sum(np.multiply(pos,temp))/ np.sum(temp))) conf2[p] += np.sum(np.multiply(pos,temp)) / p else: i += 1 conf2[conf2<combined_thresh] = 0 conf2[conf2>1] = 1 combined_conf = conf1 + conf2 combined_conf[combined_conf>1] = 1 conf = np.zeros_like(combined_conf) # Combine selections from the obove two steps i=0 while i < len_arr: if combined_conf[i] > 0.3: temp = [combined_conf[i]] pos = [i] i += 1 # start searching neighborhood for local maximum while (i+individual_tol < len_arr and np.max(combined_conf[i:i+individual_tol]) > 0.5): temp += [combined_conf[i+delta] for delta in xrange(individual_tol) if combined_conf[i+delta]>0.5] pos += [i+delta for delta in xrange(individual_tol) if combined_conf[i+delta]>0.5] i += individual_tol if len(temp) == 1: conf[pos[0]] = combined_conf[pos[0]] elif (np.max(temp)== 1 and np.sort(temp)[-2] < combined_thresh): p = pos[np.argmax(temp)] conf[p] = np.max(temp) else: p = int(np.rint(np.sum(np.multiply(pos,temp))/ np.sum(temp))) conf[p] = np.mean(np.multiply(pos,temp)) / p else: i += 1 peaks = list(np.where(conf>combined_thresh)[0]) return peaks, conf1, conf2, conf def getPeakWeights(self, sdf, peak_list): '''Compute peak confidence. Return: array with confidence values at peak positions and zeros otherwise''' mask = np.zeros_like(sdf) mask[peak_list] = 1.0 return sdf * mask def selectPeak(self, peak_candidates, featureset, winlen=5): dist_list = [] feature_types = len(featureset) gt_dist, hm_dist, tb_dist, tp_dist = [], [], [], [] for idx, x in enumerate(peak_candidates): prev_features = tuple([featureset[i][x-winlen:x, :] for i in xrange(feature_types)]) post_features = tuple([featureset[i][x:x+winlen, :] for i in xrange(feature_types)]) gt_dist.append(np.sum(pairwise_distances(prev_features[0], post_features[0]))) hm_dist.append(np.sum(pairwise_distances(prev_features[1], post_features[1]))) tb_dist.append(np.sum(pairwise_distances(prev_features[2], post_features[2]))) tp_dist.append(np.sum(pairwise_distances(prev_features[3], post_features[3]))) return peak_candidates[np.argmax(gt_dist)], peak_candidates[np.argmax(hm_dist)], peak_candidates[np.argmax(tb_dist)], peak_candidates[np.argmax(tp_dist)] def getPeakFeatures(self, peak_candidates, featureset, winlen): ''' args: winlen: length of feature window before and after an investigated peak featureset: A list of audio features for measuring the dissimilarity. return: peak_features A list of tuples of features for windows before and after each peak. ''' prev_features = [] post_features = [] feature_types = len(featureset) # print peak_candidates[-1], winlen, featureset[0].shape # if peak_candidates[-1] + winlen > featureset[0].shape[0]: # peak_candidates = peak_candidates[:-1] # for x in peak_candidates: # prev_features.append(tuple([featureset[i][x-winlen:x, :] for i in xrange(feature_types)])) # post_features.append(tuple([featureset[i][x:x+winlen, :] for i in xrange(feature_types)])) prev_features.append(tuple([featureset[i][:peak_candidates[0], :] for i in xrange(feature_types)])) post_features.append(tuple([featureset[i][peak_candidates[0]:peak_candidates[1], :] for i in xrange(feature_types)])) for idx in xrange(1, len(peak_candidates)-1): prev_features.append(tuple([featureset[i][peak_candidates[idx-1]:peak_candidates[idx], :] for i in xrange(feature_types)])) post_features.append(tuple([featureset[i][peak_candidates[idx]:peak_candidates[idx+1], :] for i in xrange(feature_types)])) prev_features.append(tuple([featureset[i][peak_candidates[-2]:peak_candidates[-1], :] for i in xrange(feature_types)])) post_features.append(tuple([featureset[i][peak_candidates[-1]:, :] for i in xrange(feature_types)])) return prev_features, post_features def segStats(self, feature_array, boundary_list): '''Return some basic stats of features associated with two boundaries.''' feature_stats = [] for i in xrange(1, len(boundary_list)): feature_stats.append(np.std(feature_array[boundary_list[i-1]:boundary_list[i]], axis=0)) return feature_stats def segmentDev(self, prev_features, post_features, metric='kl'): '''Deviations are measured for each given feature type. peak_candidates: peaks from the 1st round detection peak_features: Features for measuring the dissimilarity for parts before and after each peak. dtype: tuple. ''' dev_list = [] n_peaks = len(prev_features) n_features = len(prev_features[0]) # print 'n_peaks, n_features', n_peaks, n_features if metric == 'kl': for x in xrange(n_peaks): f1, f2 = prev_features[x], post_features[x] dev_list.append(tuple([GmmDistance(f1[i], components=1).skl_distance_full(GmmDistance(f2[i], components=1)) for i in xrange(n_features)])) elif metric == 'euclidean': for x in xrange(n_peaks): f1, f2 = prev_features[x], post_features[x] dev_list.append(tuple([pairwise_distances(f1[i], f2[i]) for i in xrange(n_features)])) return dev_list def main(): pass if __name__ == '__main__': main()