annotate dsp/transforms/FFT.cpp @ 84:e5907ae6de17

* Add GPL and README; some tidying
author Chris Cannam
date Mon, 13 Dec 2010 14:55:28 +0000
parents 769da847732b
children f6ccde089491
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 QM DSP Library
cannam@0 5
cannam@0 6 Centre for Digital Music, Queen Mary, University of London.
cannam@0 7 This file is based on Don Cross's public domain FFT implementation.
cannam@0 8 */
cannam@0 9
cannam@0 10 #include "FFT.h"
cannam@55 11
cannam@55 12 #include "maths/MathUtilities.h"
cannam@55 13
cannam@0 14 #include <cmath>
cannam@0 15
cannam@55 16 #include <iostream>
cannam@55 17
cannam@64 18 FFT::FFT(unsigned int n) :
cannam@64 19 m_n(n),
cannam@64 20 m_private(0)
cannam@0 21 {
cannam@64 22 if( !MathUtilities::isPowerOfTwo(m_n) )
cannam@64 23 {
cannam@64 24 std::cerr << "ERROR: FFT: Non-power-of-two FFT size "
cannam@64 25 << m_n << " not supported in this implementation"
cannam@64 26 << std::endl;
cannam@64 27 return;
cannam@64 28 }
cannam@0 29 }
cannam@0 30
cannam@0 31 FFT::~FFT()
cannam@0 32 {
cannam@0 33
cannam@0 34 }
cannam@0 35
cannam@64 36 FFTReal::FFTReal(unsigned int n) :
cannam@64 37 m_n(n),
cannam@64 38 m_private(0)
cannam@0 39 {
cannam@64 40 m_private = new FFT(m_n);
cannam@64 41 }
cannam@0 42
cannam@64 43 FFTReal::~FFTReal()
cannam@64 44 {
cannam@64 45 delete (FFT *)m_private;
cannam@64 46 }
cannam@64 47
cannam@64 48 void
cannam@64 49 FFTReal::process(bool inverse,
cannam@64 50 const double *realIn,
cannam@64 51 double *realOut, double *imagOut)
cannam@64 52 {
cannam@64 53 ((FFT *)m_private)->process(inverse, realIn, 0, realOut, imagOut);
cannam@64 54 }
cannam@64 55
cannam@64 56 static unsigned int numberOfBitsNeeded(unsigned int p_nSamples)
cannam@64 57 {
cannam@64 58 int i;
cannam@64 59
cannam@64 60 if( p_nSamples < 2 )
cannam@64 61 {
cannam@64 62 return 0;
cannam@64 63 }
cannam@64 64
cannam@64 65 for ( i=0; ; i++ )
cannam@64 66 {
cannam@64 67 if( p_nSamples & (1 << i) ) return i;
cannam@64 68 }
cannam@64 69 }
cannam@64 70
cannam@64 71 static unsigned int reverseBits(unsigned int p_nIndex, unsigned int p_nBits)
cannam@64 72 {
cannam@64 73 unsigned int i, rev;
cannam@64 74
cannam@64 75 for(i=rev=0; i < p_nBits; i++)
cannam@64 76 {
cannam@64 77 rev = (rev << 1) | (p_nIndex & 1);
cannam@64 78 p_nIndex >>= 1;
cannam@64 79 }
cannam@64 80
cannam@64 81 return rev;
cannam@64 82 }
cannam@64 83
cannam@64 84 void
cannam@64 85 FFT::process(bool p_bInverseTransform,
cannam@64 86 const double *p_lpRealIn, const double *p_lpImagIn,
cannam@64 87 double *p_lpRealOut, double *p_lpImagOut)
cannam@64 88 {
cannam@66 89 if (!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
cannam@66 90
cannam@66 91 // std::cerr << "FFT::process(" << m_n << "," << p_bInverseTransform << ")" << std::endl;
cannam@0 92
cannam@0 93 unsigned int NumBits;
cannam@0 94 unsigned int i, j, k, n;
cannam@0 95 unsigned int BlockSize, BlockEnd;
cannam@0 96
cannam@0 97 double angle_numerator = 2.0 * M_PI;
cannam@0 98 double tr, ti;
cannam@0 99
cannam@64 100 if( !MathUtilities::isPowerOfTwo(m_n) )
cannam@0 101 {
cannam@55 102 std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size "
cannam@64 103 << m_n << " not supported in this implementation"
cannam@55 104 << std::endl;
cannam@0 105 return;
cannam@0 106 }
cannam@0 107
cannam@0 108 if( p_bInverseTransform ) angle_numerator = -angle_numerator;
cannam@0 109
cannam@64 110 NumBits = numberOfBitsNeeded ( m_n );
cannam@0 111
cannam@0 112
cannam@64 113 for( i=0; i < m_n; i++ )
cannam@0 114 {
cannam@0 115 j = reverseBits ( i, NumBits );
cannam@0 116 p_lpRealOut[j] = p_lpRealIn[i];
cannam@0 117 p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
cannam@0 118 }
cannam@0 119
cannam@0 120
cannam@0 121 BlockEnd = 1;
cannam@64 122 for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 )
cannam@0 123 {
cannam@0 124 double delta_angle = angle_numerator / (double)BlockSize;
cannam@0 125 double sm2 = -sin ( -2 * delta_angle );
cannam@0 126 double sm1 = -sin ( -delta_angle );
cannam@0 127 double cm2 = cos ( -2 * delta_angle );
cannam@0 128 double cm1 = cos ( -delta_angle );
cannam@0 129 double w = 2 * cm1;
cannam@0 130 double ar[3], ai[3];
cannam@0 131
cannam@64 132 for( i=0; i < m_n; i += BlockSize )
cannam@0 133 {
cannam@0 134
cannam@0 135 ar[2] = cm2;
cannam@0 136 ar[1] = cm1;
cannam@0 137
cannam@0 138 ai[2] = sm2;
cannam@0 139 ai[1] = sm1;
cannam@0 140
cannam@0 141 for ( j=i, n=0; n < BlockEnd; j++, n++ )
cannam@0 142 {
cannam@0 143
cannam@0 144 ar[0] = w*ar[1] - ar[2];
cannam@0 145 ar[2] = ar[1];
cannam@0 146 ar[1] = ar[0];
cannam@0 147
cannam@0 148 ai[0] = w*ai[1] - ai[2];
cannam@0 149 ai[2] = ai[1];
cannam@0 150 ai[1] = ai[0];
cannam@0 151
cannam@0 152 k = j + BlockEnd;
cannam@0 153 tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
cannam@0 154 ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
cannam@0 155
cannam@0 156 p_lpRealOut[k] = p_lpRealOut[j] - tr;
cannam@0 157 p_lpImagOut[k] = p_lpImagOut[j] - ti;
cannam@0 158
cannam@0 159 p_lpRealOut[j] += tr;
cannam@0 160 p_lpImagOut[j] += ti;
cannam@0 161
cannam@0 162 }
cannam@0 163 }
cannam@0 164
cannam@0 165 BlockEnd = BlockSize;
cannam@0 166
cannam@0 167 }
cannam@0 168
cannam@0 169
cannam@0 170 if( p_bInverseTransform )
cannam@0 171 {
cannam@64 172 double denom = (double)m_n;
cannam@0 173
cannam@64 174 for ( i=0; i < m_n; i++ )
cannam@0 175 {
cannam@0 176 p_lpRealOut[i] /= denom;
cannam@0 177 p_lpImagOut[i] /= denom;
cannam@0 178 }
cannam@0 179 }
cannam@0 180 }
cannam@0 181