cannam@0
|
1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
|
cannam@0
|
2
|
cannam@0
|
3 /*
|
cannam@0
|
4 QM DSP Library
|
cannam@0
|
5
|
cannam@0
|
6 Centre for Digital Music, Queen Mary, University of London.
|
cannam@0
|
7 This file is based on Don Cross's public domain FFT implementation.
|
cannam@0
|
8 */
|
cannam@0
|
9
|
cannam@0
|
10 #include "FFT.h"
|
cannam@55
|
11
|
cannam@55
|
12 #include "maths/MathUtilities.h"
|
cannam@55
|
13
|
cannam@0
|
14 #include <cmath>
|
cannam@0
|
15
|
cannam@55
|
16 #include <iostream>
|
cannam@55
|
17
|
cannam@64
|
18 FFT::FFT(unsigned int n) :
|
cannam@64
|
19 m_n(n),
|
cannam@64
|
20 m_private(0)
|
cannam@0
|
21 {
|
cannam@64
|
22 if( !MathUtilities::isPowerOfTwo(m_n) )
|
cannam@64
|
23 {
|
cannam@64
|
24 std::cerr << "ERROR: FFT: Non-power-of-two FFT size "
|
cannam@64
|
25 << m_n << " not supported in this implementation"
|
cannam@64
|
26 << std::endl;
|
cannam@64
|
27 return;
|
cannam@64
|
28 }
|
cannam@0
|
29 }
|
cannam@0
|
30
|
cannam@0
|
31 FFT::~FFT()
|
cannam@0
|
32 {
|
cannam@0
|
33
|
cannam@0
|
34 }
|
cannam@0
|
35
|
cannam@64
|
36 FFTReal::FFTReal(unsigned int n) :
|
cannam@64
|
37 m_n(n),
|
cannam@64
|
38 m_private(0)
|
cannam@0
|
39 {
|
cannam@64
|
40 m_private = new FFT(m_n);
|
cannam@64
|
41 }
|
cannam@0
|
42
|
cannam@64
|
43 FFTReal::~FFTReal()
|
cannam@64
|
44 {
|
cannam@64
|
45 delete (FFT *)m_private;
|
cannam@64
|
46 }
|
cannam@64
|
47
|
cannam@64
|
48 void
|
cannam@64
|
49 FFTReal::process(bool inverse,
|
cannam@64
|
50 const double *realIn,
|
cannam@64
|
51 double *realOut, double *imagOut)
|
cannam@64
|
52 {
|
cannam@64
|
53 ((FFT *)m_private)->process(inverse, realIn, 0, realOut, imagOut);
|
cannam@64
|
54 }
|
cannam@64
|
55
|
cannam@64
|
56 static unsigned int numberOfBitsNeeded(unsigned int p_nSamples)
|
cannam@64
|
57 {
|
cannam@64
|
58 int i;
|
cannam@64
|
59
|
cannam@64
|
60 if( p_nSamples < 2 )
|
cannam@64
|
61 {
|
cannam@64
|
62 return 0;
|
cannam@64
|
63 }
|
cannam@64
|
64
|
cannam@64
|
65 for ( i=0; ; i++ )
|
cannam@64
|
66 {
|
cannam@64
|
67 if( p_nSamples & (1 << i) ) return i;
|
cannam@64
|
68 }
|
cannam@64
|
69 }
|
cannam@64
|
70
|
cannam@64
|
71 static unsigned int reverseBits(unsigned int p_nIndex, unsigned int p_nBits)
|
cannam@64
|
72 {
|
cannam@64
|
73 unsigned int i, rev;
|
cannam@64
|
74
|
cannam@64
|
75 for(i=rev=0; i < p_nBits; i++)
|
cannam@64
|
76 {
|
cannam@64
|
77 rev = (rev << 1) | (p_nIndex & 1);
|
cannam@64
|
78 p_nIndex >>= 1;
|
cannam@64
|
79 }
|
cannam@64
|
80
|
cannam@64
|
81 return rev;
|
cannam@64
|
82 }
|
cannam@64
|
83
|
cannam@64
|
84 void
|
cannam@64
|
85 FFT::process(bool p_bInverseTransform,
|
cannam@64
|
86 const double *p_lpRealIn, const double *p_lpImagIn,
|
cannam@64
|
87 double *p_lpRealOut, double *p_lpImagOut)
|
cannam@64
|
88 {
|
cannam@66
|
89 if (!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
|
cannam@66
|
90
|
cannam@66
|
91 // std::cerr << "FFT::process(" << m_n << "," << p_bInverseTransform << ")" << std::endl;
|
cannam@0
|
92
|
cannam@0
|
93 unsigned int NumBits;
|
cannam@0
|
94 unsigned int i, j, k, n;
|
cannam@0
|
95 unsigned int BlockSize, BlockEnd;
|
cannam@0
|
96
|
cannam@0
|
97 double angle_numerator = 2.0 * M_PI;
|
cannam@0
|
98 double tr, ti;
|
cannam@0
|
99
|
cannam@64
|
100 if( !MathUtilities::isPowerOfTwo(m_n) )
|
cannam@0
|
101 {
|
cannam@55
|
102 std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size "
|
cannam@64
|
103 << m_n << " not supported in this implementation"
|
cannam@55
|
104 << std::endl;
|
cannam@0
|
105 return;
|
cannam@0
|
106 }
|
cannam@0
|
107
|
cannam@0
|
108 if( p_bInverseTransform ) angle_numerator = -angle_numerator;
|
cannam@0
|
109
|
cannam@64
|
110 NumBits = numberOfBitsNeeded ( m_n );
|
cannam@0
|
111
|
cannam@0
|
112
|
cannam@64
|
113 for( i=0; i < m_n; i++ )
|
cannam@0
|
114 {
|
cannam@0
|
115 j = reverseBits ( i, NumBits );
|
cannam@0
|
116 p_lpRealOut[j] = p_lpRealIn[i];
|
cannam@0
|
117 p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
|
cannam@0
|
118 }
|
cannam@0
|
119
|
cannam@0
|
120
|
cannam@0
|
121 BlockEnd = 1;
|
cannam@64
|
122 for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 )
|
cannam@0
|
123 {
|
cannam@0
|
124 double delta_angle = angle_numerator / (double)BlockSize;
|
cannam@0
|
125 double sm2 = -sin ( -2 * delta_angle );
|
cannam@0
|
126 double sm1 = -sin ( -delta_angle );
|
cannam@0
|
127 double cm2 = cos ( -2 * delta_angle );
|
cannam@0
|
128 double cm1 = cos ( -delta_angle );
|
cannam@0
|
129 double w = 2 * cm1;
|
cannam@0
|
130 double ar[3], ai[3];
|
cannam@0
|
131
|
cannam@64
|
132 for( i=0; i < m_n; i += BlockSize )
|
cannam@0
|
133 {
|
cannam@0
|
134
|
cannam@0
|
135 ar[2] = cm2;
|
cannam@0
|
136 ar[1] = cm1;
|
cannam@0
|
137
|
cannam@0
|
138 ai[2] = sm2;
|
cannam@0
|
139 ai[1] = sm1;
|
cannam@0
|
140
|
cannam@0
|
141 for ( j=i, n=0; n < BlockEnd; j++, n++ )
|
cannam@0
|
142 {
|
cannam@0
|
143
|
cannam@0
|
144 ar[0] = w*ar[1] - ar[2];
|
cannam@0
|
145 ar[2] = ar[1];
|
cannam@0
|
146 ar[1] = ar[0];
|
cannam@0
|
147
|
cannam@0
|
148 ai[0] = w*ai[1] - ai[2];
|
cannam@0
|
149 ai[2] = ai[1];
|
cannam@0
|
150 ai[1] = ai[0];
|
cannam@0
|
151
|
cannam@0
|
152 k = j + BlockEnd;
|
cannam@0
|
153 tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
|
cannam@0
|
154 ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
|
cannam@0
|
155
|
cannam@0
|
156 p_lpRealOut[k] = p_lpRealOut[j] - tr;
|
cannam@0
|
157 p_lpImagOut[k] = p_lpImagOut[j] - ti;
|
cannam@0
|
158
|
cannam@0
|
159 p_lpRealOut[j] += tr;
|
cannam@0
|
160 p_lpImagOut[j] += ti;
|
cannam@0
|
161
|
cannam@0
|
162 }
|
cannam@0
|
163 }
|
cannam@0
|
164
|
cannam@0
|
165 BlockEnd = BlockSize;
|
cannam@0
|
166
|
cannam@0
|
167 }
|
cannam@0
|
168
|
cannam@0
|
169
|
cannam@0
|
170 if( p_bInverseTransform )
|
cannam@0
|
171 {
|
cannam@64
|
172 double denom = (double)m_n;
|
cannam@0
|
173
|
cannam@64
|
174 for ( i=0; i < m_n; i++ )
|
cannam@0
|
175 {
|
cannam@0
|
176 p_lpRealOut[i] /= denom;
|
cannam@0
|
177 p_lpImagOut[i] /= denom;
|
cannam@0
|
178 }
|
cannam@0
|
179 }
|
cannam@0
|
180 }
|
cannam@0
|
181
|