annotate dsp/transforms/FFT.cpp @ 73:dcb555b90924

* Key detector: when returning key strengths, use the peak value of the three underlying chromagram correlations (from 36-bin chromagram) corresponding to each key, instead of the mean. Rationale: This is the same method as used when returning the key value, and it's nice to have the same results in both returned value and plot. The peak performed better than the sum with a simple test set of triads, so it seems reasonable to change the plot to match the key output rather than the other way around. * FFT: kiss_fftr returns only the non-conjugate bins, synthesise the rest rather than leaving them (perhaps dangerously) undefined. Fixes an uninitialised data error in chromagram that could cause garbage results from key detector. * Constant Q: remove precalculated values again, I reckon they're not proving such a good tradeoff.
author cannam
date Fri, 05 Jun 2009 15:12:39 +0000
parents 2af6edd98dfa
children 769da847732b
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 QM DSP Library
cannam@0 5
cannam@0 6 Centre for Digital Music, Queen Mary, University of London.
cannam@0 7 This file is based on Don Cross's public domain FFT implementation.
cannam@0 8 */
cannam@0 9
cannam@0 10 #include "FFT.h"
cannam@55 11
cannam@55 12 #include "maths/MathUtilities.h"
cannam@55 13
cannam@0 14 #include <cmath>
cannam@0 15
cannam@55 16 #include <iostream>
cannam@55 17
cannam@65 18 //#define USE_BUILTIN_FFT 1
cannam@0 19
cannam@64 20 #ifdef USE_BUILTIN_FFT
cannam@64 21
cannam@64 22 FFT::FFT(unsigned int n) :
cannam@64 23 m_n(n),
cannam@64 24 m_private(0)
cannam@0 25 {
cannam@64 26 if( !MathUtilities::isPowerOfTwo(m_n) )
cannam@64 27 {
cannam@64 28 std::cerr << "ERROR: FFT: Non-power-of-two FFT size "
cannam@64 29 << m_n << " not supported in this implementation"
cannam@64 30 << std::endl;
cannam@64 31 return;
cannam@64 32 }
cannam@0 33 }
cannam@0 34
cannam@0 35 FFT::~FFT()
cannam@0 36 {
cannam@0 37
cannam@0 38 }
cannam@0 39
cannam@64 40 FFTReal::FFTReal(unsigned int n) :
cannam@64 41 m_n(n),
cannam@64 42 m_private(0)
cannam@0 43 {
cannam@64 44 m_private = new FFT(m_n);
cannam@64 45 }
cannam@0 46
cannam@64 47 FFTReal::~FFTReal()
cannam@64 48 {
cannam@64 49 delete (FFT *)m_private;
cannam@64 50 }
cannam@64 51
cannam@64 52 void
cannam@64 53 FFTReal::process(bool inverse,
cannam@64 54 const double *realIn,
cannam@64 55 double *realOut, double *imagOut)
cannam@64 56 {
cannam@64 57 ((FFT *)m_private)->process(inverse, realIn, 0, realOut, imagOut);
cannam@64 58 }
cannam@64 59
cannam@64 60 static unsigned int numberOfBitsNeeded(unsigned int p_nSamples)
cannam@64 61 {
cannam@64 62 int i;
cannam@64 63
cannam@64 64 if( p_nSamples < 2 )
cannam@64 65 {
cannam@64 66 return 0;
cannam@64 67 }
cannam@64 68
cannam@64 69 for ( i=0; ; i++ )
cannam@64 70 {
cannam@64 71 if( p_nSamples & (1 << i) ) return i;
cannam@64 72 }
cannam@64 73 }
cannam@64 74
cannam@64 75 static unsigned int reverseBits(unsigned int p_nIndex, unsigned int p_nBits)
cannam@64 76 {
cannam@64 77 unsigned int i, rev;
cannam@64 78
cannam@64 79 for(i=rev=0; i < p_nBits; i++)
cannam@64 80 {
cannam@64 81 rev = (rev << 1) | (p_nIndex & 1);
cannam@64 82 p_nIndex >>= 1;
cannam@64 83 }
cannam@64 84
cannam@64 85 return rev;
cannam@64 86 }
cannam@64 87
cannam@64 88 void
cannam@64 89 FFT::process(bool p_bInverseTransform,
cannam@64 90 const double *p_lpRealIn, const double *p_lpImagIn,
cannam@64 91 double *p_lpRealOut, double *p_lpImagOut)
cannam@64 92 {
cannam@66 93 if (!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
cannam@66 94
cannam@66 95 // std::cerr << "FFT::process(" << m_n << "," << p_bInverseTransform << ")" << std::endl;
cannam@0 96
cannam@0 97 unsigned int NumBits;
cannam@0 98 unsigned int i, j, k, n;
cannam@0 99 unsigned int BlockSize, BlockEnd;
cannam@0 100
cannam@0 101 double angle_numerator = 2.0 * M_PI;
cannam@0 102 double tr, ti;
cannam@0 103
cannam@64 104 if( !MathUtilities::isPowerOfTwo(m_n) )
cannam@0 105 {
cannam@55 106 std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size "
cannam@64 107 << m_n << " not supported in this implementation"
cannam@55 108 << std::endl;
cannam@0 109 return;
cannam@0 110 }
cannam@0 111
cannam@0 112 if( p_bInverseTransform ) angle_numerator = -angle_numerator;
cannam@0 113
cannam@64 114 NumBits = numberOfBitsNeeded ( m_n );
cannam@0 115
cannam@0 116
cannam@64 117 for( i=0; i < m_n; i++ )
cannam@0 118 {
cannam@0 119 j = reverseBits ( i, NumBits );
cannam@0 120 p_lpRealOut[j] = p_lpRealIn[i];
cannam@0 121 p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
cannam@0 122 }
cannam@0 123
cannam@0 124
cannam@0 125 BlockEnd = 1;
cannam@64 126 for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 )
cannam@0 127 {
cannam@0 128 double delta_angle = angle_numerator / (double)BlockSize;
cannam@0 129 double sm2 = -sin ( -2 * delta_angle );
cannam@0 130 double sm1 = -sin ( -delta_angle );
cannam@0 131 double cm2 = cos ( -2 * delta_angle );
cannam@0 132 double cm1 = cos ( -delta_angle );
cannam@0 133 double w = 2 * cm1;
cannam@0 134 double ar[3], ai[3];
cannam@0 135
cannam@64 136 for( i=0; i < m_n; i += BlockSize )
cannam@0 137 {
cannam@0 138
cannam@0 139 ar[2] = cm2;
cannam@0 140 ar[1] = cm1;
cannam@0 141
cannam@0 142 ai[2] = sm2;
cannam@0 143 ai[1] = sm1;
cannam@0 144
cannam@0 145 for ( j=i, n=0; n < BlockEnd; j++, n++ )
cannam@0 146 {
cannam@0 147
cannam@0 148 ar[0] = w*ar[1] - ar[2];
cannam@0 149 ar[2] = ar[1];
cannam@0 150 ar[1] = ar[0];
cannam@0 151
cannam@0 152 ai[0] = w*ai[1] - ai[2];
cannam@0 153 ai[2] = ai[1];
cannam@0 154 ai[1] = ai[0];
cannam@0 155
cannam@0 156 k = j + BlockEnd;
cannam@0 157 tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
cannam@0 158 ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
cannam@0 159
cannam@0 160 p_lpRealOut[k] = p_lpRealOut[j] - tr;
cannam@0 161 p_lpImagOut[k] = p_lpImagOut[j] - ti;
cannam@0 162
cannam@0 163 p_lpRealOut[j] += tr;
cannam@0 164 p_lpImagOut[j] += ti;
cannam@0 165
cannam@0 166 }
cannam@0 167 }
cannam@0 168
cannam@0 169 BlockEnd = BlockSize;
cannam@0 170
cannam@0 171 }
cannam@0 172
cannam@0 173
cannam@0 174 if( p_bInverseTransform )
cannam@0 175 {
cannam@64 176 double denom = (double)m_n;
cannam@0 177
cannam@64 178 for ( i=0; i < m_n; i++ )
cannam@0 179 {
cannam@0 180 p_lpRealOut[i] /= denom;
cannam@0 181 p_lpImagOut[i] /= denom;
cannam@0 182 }
cannam@0 183 }
cannam@0 184 }
cannam@0 185
cannam@64 186 #else
cannam@0 187
cannam@64 188 #include "kissfft/kiss_fft.h"
cannam@64 189 #include "kissfft/kiss_fftr.h"
cannam@0 190
cannam@65 191 struct KissFFTRec {
cannam@65 192 kiss_fft_cfg forward;
cannam@65 193 kiss_fft_cfg inverse;
cannam@65 194 kiss_fft_cpx *in;
cannam@65 195 kiss_fft_cpx *out;
cannam@65 196 };
cannam@65 197
cannam@65 198 FFT::FFT(unsigned int n) :
cannam@65 199 m_n(n),
cannam@65 200 m_private(0)
cannam@65 201 {
cannam@65 202 KissFFTRec *rec = new KissFFTRec;
cannam@65 203 rec->forward = kiss_fft_alloc(m_n, 0, 0, 0);
cannam@65 204 rec->inverse = kiss_fft_alloc(m_n, 1, 0, 0);
cannam@65 205 rec->in = new kiss_fft_cpx[m_n];
cannam@65 206 rec->out = new kiss_fft_cpx[m_n];
cannam@65 207 m_private = rec;
cannam@65 208 }
cannam@65 209
cannam@65 210 FFT::~FFT()
cannam@65 211 {
cannam@65 212 KissFFTRec *rec = (KissFFTRec *)m_private;
cannam@65 213 kiss_fft_free(rec->forward);
cannam@65 214 kiss_fft_free(rec->inverse);
cannam@65 215 delete[] rec->in;
cannam@65 216 delete[] rec->out;
cannam@65 217 }
cannam@65 218
cannam@65 219 void
cannam@65 220 FFT::process(bool inverse,
cannam@65 221 const double *rin, const double *iin,
cannam@65 222 double *rout, double *iout)
cannam@65 223 {
cannam@65 224 KissFFTRec *rec = (KissFFTRec *)m_private;
cannam@65 225 for (int i = 0; i < m_n; ++i) {
cannam@65 226 rec->in[i].r = rin[i];
cannam@65 227 }
cannam@65 228 if (iin) {
cannam@65 229 for (int i = 0; i < m_n; ++i) {
cannam@65 230 rec->in[i].i = iin[i];
cannam@65 231 }
cannam@65 232 } else {
cannam@65 233 for (int i = 0; i < m_n; ++i) {
cannam@65 234 rec->in[i].i = 0.0;
cannam@65 235 }
cannam@65 236 }
cannam@65 237 if (inverse) {
cannam@65 238 kiss_fft(rec->inverse, rec->in, rec->out);
cannam@65 239 } else {
cannam@65 240 kiss_fft(rec->forward, rec->in, rec->out);
cannam@65 241 }
cannam@65 242 for (int i = 0; i < m_n; ++i) {
cannam@65 243 rout[i] = rec->out[i].r;
cannam@65 244 iout[i] = rec->out[i].i;
cannam@65 245 }
cannam@65 246 }
cannam@65 247
cannam@65 248 struct KissFFTRealRec {
cannam@65 249 kiss_fftr_cfg forward;
cannam@65 250 kiss_fftr_cfg inverse;
cannam@65 251 kiss_fft_cpx *out;
cannam@65 252 };
cannam@65 253
cannam@65 254 FFTReal::FFTReal(unsigned int n) :
cannam@65 255 m_n(n),
cannam@65 256 m_private(0)
cannam@65 257 {
cannam@65 258 KissFFTRealRec *rec = new KissFFTRealRec;
cannam@65 259 rec->forward = kiss_fftr_alloc(m_n, 0, 0, 0);
cannam@65 260 rec->inverse = kiss_fftr_alloc(m_n, 1, 0, 0);
cannam@65 261 rec->out = new kiss_fft_cpx[m_n];
cannam@65 262 m_private = rec;
cannam@65 263 }
cannam@65 264
cannam@65 265 FFTReal::~FFTReal()
cannam@65 266 {
cannam@65 267 KissFFTRealRec *rec = (KissFFTRealRec *)m_private;
cannam@65 268 kiss_fftr_free(rec->forward);
cannam@65 269 kiss_fftr_free(rec->inverse);
cannam@65 270 delete[] rec->out;
cannam@65 271 }
cannam@65 272
cannam@65 273 void
cannam@65 274 FFTReal::process(bool inverse,
cannam@65 275 const double *rin,
cannam@65 276 double *rout, double *iout)
cannam@65 277 {
cannam@65 278 KissFFTRealRec *rec = (KissFFTRealRec *)m_private;
cannam@65 279 if (inverse) {
cannam@65 280 kiss_fftr(rec->inverse, rin, rec->out);
cannam@73 281 for (int i = 0; i < m_n; ++i) {
cannam@73 282 rout[i] = rec->out[i].r;
cannam@73 283 iout[i] = rec->out[i].i;
cannam@73 284 }
cannam@65 285 } else {
cannam@65 286 kiss_fftr(rec->forward, rin, rec->out);
cannam@73 287 rout[0] = rec->out[0].r;
cannam@73 288 iout[0] = rec->out[0].i;
cannam@73 289 for (int i = 1; i < m_n/2; ++i) {
cannam@73 290 rout[m_n-i] = rout[i] = rec->out[i].r;
cannam@73 291 }
cannam@73 292 for (int i = 1; i < m_n/2; ++i) {
cannam@73 293 iout[i] = rec->out[i].i;
cannam@73 294 iout[m_n-i] = -iout[i];
cannam@73 295 }
cannam@73 296 rout[m_n/2] = rec->out[m_n/2].r;
cannam@73 297 iout[m_n/2] = rec->out[m_n/2].i;
cannam@65 298 }
cannam@65 299 }
cannam@65 300
cannam@64 301 #endif