annotate dsp/segmentation/cluster_segmenter.c @ 414:7e8d1f26b098

Fix compiler warnings with -Wall -Wextra
author Chris Cannam <c.cannam@qmul.ac.uk>
date Mon, 28 Sep 2015 12:33:17 +0100
parents d5014ab8b0e5
children 175e51ae78eb
rev   line source
c@243 1 /*
c@243 2 * cluster_segmenter.c
c@243 3 * soundbite
c@243 4 *
c@243 5 * Created by Mark Levy on 06/04/2006.
c@309 6 * Copyright 2006 Centre for Digital Music, Queen Mary, University of London.
c@309 7
c@309 8 This program is free software; you can redistribute it and/or
c@309 9 modify it under the terms of the GNU General Public License as
c@309 10 published by the Free Software Foundation; either version 2 of the
c@309 11 License, or (at your option) any later version. See the file
c@309 12 COPYING included with this distribution for more information.
c@243 13 *
c@243 14 */
c@243 15
c@243 16 #include "cluster_segmenter.h"
c@243 17
c@243 18 extern int readmatarray_size(const char *filepath, int n_array, int* t, int* d);
c@243 19 extern int readmatarray(const char *filepath, int n_array, int t, int d, double** arr);
c@243 20
c@243 21 /* converts constant-Q features to normalised chroma */
c@243 22 void cq2chroma(double** cq, int nframes, int ncoeff, int bins, double** chroma)
c@243 23 {
c@243 24 int noct = ncoeff / bins; /* number of complete octaves in constant-Q */
c@243 25 int t, b, oct, ix;
c@243 26 //double maxchroma; /* max chroma value at each time, for normalisation */
c@243 27 //double sum; /* for normalisation */
c@243 28
c@243 29 for (t = 0; t < nframes; t++)
c@243 30 {
c@243 31 for (b = 0; b < bins; b++)
c@243 32 chroma[t][b] = 0;
c@243 33 for (oct = 0; oct < noct; oct++)
c@243 34 {
c@243 35 ix = oct * bins;
c@243 36 for (b = 0; b < bins; b++)
c@243 37 chroma[t][b] += fabs(cq[t][ix+b]);
c@243 38 }
c@243 39 /* normalise to unit sum
c@243 40 sum = 0;
c@243 41 for (b = 0; b < bins; b++)
c@243 42 sum += chroma[t][b];
c@243 43 for (b = 0; b < bins; b++)
c@243 44 chroma[t][b] /= sum;
c@245 45 */
c@243 46 /* normalise to unit max - NO this made results much worse!
c@243 47 maxchroma = 0;
c@243 48 for (b = 0; b < bins; b++)
c@243 49 if (chroma[t][b] > maxchroma)
c@243 50 maxchroma = chroma[t][b];
c@243 51 if (maxchroma > 0)
c@243 52 for (b = 0; b < bins; b++)
c@243 53 chroma[t][b] /= maxchroma;
c@243 54 */
c@243 55 }
c@243 56 }
c@243 57
c@243 58 /* applies MPEG-7 normalisation to constant-Q features, storing normalised envelope (norm) in last feature dimension */
c@243 59 void mpeg7_constq(double** features, int nframes, int ncoeff)
c@243 60 {
c@243 61 int i, j;
c@243 62 double ss;
c@243 63 double env;
c@243 64 double maxenv = 0;
c@243 65
c@243 66 /* convert const-Q features to dB scale */
c@243 67 for (i = 0; i < nframes; i++)
c@243 68 for (j = 0; j < ncoeff; j++)
c@243 69 features[i][j] = 10.0 * log10(features[i][j]+DBL_EPSILON);
c@243 70
c@243 71 /* normalise each feature vector and add the norm as an extra feature dimension */
c@243 72 for (i = 0; i < nframes; i++)
c@243 73 {
c@243 74 ss = 0;
c@243 75 for (j = 0; j < ncoeff; j++)
c@243 76 ss += features[i][j] * features[i][j];
c@243 77 env = sqrt(ss);
c@243 78 for (j = 0; j < ncoeff; j++)
c@243 79 features[i][j] /= env;
c@243 80 features[i][ncoeff] = env;
c@243 81 if (env > maxenv)
c@243 82 maxenv = env;
c@243 83 }
c@243 84 /* normalise the envelopes */
c@243 85 for (i = 0; i < nframes; i++)
c@243 86 features[i][ncoeff] /= maxenv;
c@243 87 }
c@243 88
c@243 89 /* return histograms h[nx*m] of data x[nx] into m bins using a sliding window of length h_len (MUST BE ODD) */
c@243 90 /* NB h is a vector in row major order, as required by cluster_melt() */
c@243 91 /* for historical reasons we normalise the histograms by their norm (not to sum to one) */
c@243 92 void create_histograms(int* x, int nx, int m, int hlen, double* h)
c@243 93 {
c@243 94 int i, j, t;
c@243 95 double norm;
c@266 96
c@266 97 for (i = 0; i < nx*m; i++)
c@266 98 h[i] = 0;
c@266 99
c@243 100 for (i = hlen/2; i < nx-hlen/2; i++)
c@243 101 {
c@243 102 for (j = 0; j < m; j++)
c@243 103 h[i*m+j] = 0;
c@243 104 for (t = i-hlen/2; t <= i+hlen/2; t++)
c@243 105 ++h[i*m+x[t]];
c@243 106 norm = 0;
c@243 107 for (j = 0; j < m; j++)
c@243 108 norm += h[i*m+j] * h[i*m+j];
c@243 109 for (j = 0; j < m; j++)
c@243 110 h[i*m+j] /= norm;
c@243 111 }
c@243 112
c@243 113 /* duplicate histograms at beginning and end to create one histogram for each data value supplied */
c@243 114 for (i = 0; i < hlen/2; i++)
c@243 115 for (j = 0; j < m; j++)
c@243 116 h[i*m+j] = h[hlen/2*m+j];
c@243 117 for (i = nx-hlen/2; i < nx; i++)
c@243 118 for (j = 0; j < m; j++)
c@243 119 h[i*m+j] = h[(nx-hlen/2-1)*m+j];
c@243 120 }
c@243 121
c@243 122 /* segment using HMM and then histogram clustering */
c@243 123 void cluster_segment(int* q, double** features, int frames_read, int feature_length, int nHMM_states,
c@243 124 int histogram_length, int nclusters, int neighbour_limit)
c@243 125 {
c@243 126 int i, j;
c@243 127
c@243 128 /*****************************/
c@243 129 if (0) {
c@243 130 /* try just using the predominant bin number as a 'decoded state' */
c@243 131 nHMM_states = feature_length + 1; /* allow a 'zero' state */
c@243 132 double chroma_thresh = 0.05;
c@243 133 double maxval;
c@243 134 int maxbin;
c@243 135 for (i = 0; i < frames_read; i++)
c@243 136 {
c@243 137 maxval = 0;
c@243 138 for (j = 0; j < feature_length; j++)
c@243 139 {
c@243 140 if (features[i][j] > maxval)
c@243 141 {
c@243 142 maxval = features[i][j];
c@243 143 maxbin = j;
c@243 144 }
c@243 145 }
c@243 146 if (maxval > chroma_thresh)
c@243 147 q[i] = maxbin;
c@243 148 else
c@243 149 q[i] = feature_length;
c@243 150 }
c@243 151
c@243 152 }
c@243 153 if (1) {
c@243 154 /*****************************/
c@243 155
c@243 156
c@243 157 /* scale all the features to 'balance covariances' during HMM training */
c@243 158 double scale = 10;
c@243 159 for (i = 0; i < frames_read; i++)
c@243 160 for (j = 0; j < feature_length; j++)
c@243 161 features[i][j] *= scale;
c@243 162
c@243 163 /* train an HMM on the features */
c@243 164
c@243 165 /* create a model */
c@243 166 model_t* model = hmm_init(features, frames_read, feature_length, nHMM_states);
c@243 167
c@243 168 /* train the model */
c@243 169 hmm_train(features, frames_read, model);
c@283 170 /*
c@243 171 printf("\n\nafter training:\n");
c@243 172 hmm_print(model);
c@283 173 */
c@243 174 /* decode the hidden state sequence */
c@243 175 viterbi_decode(features, frames_read, model, q);
c@243 176 hmm_close(model);
c@243 177
c@243 178 /*****************************/
c@243 179 }
c@243 180 /*****************************/
c@243 181
c@243 182
c@283 183 /*
c@243 184 fprintf(stderr, "HMM state sequence:\n");
c@243 185 for (i = 0; i < frames_read; i++)
c@243 186 fprintf(stderr, "%d ", q[i]);
c@243 187 fprintf(stderr, "\n\n");
c@283 188 */
c@243 189
c@243 190 /* create histograms of states */
c@243 191 double* h = (double*) malloc(frames_read*nHMM_states*sizeof(double)); /* vector in row major order */
c@243 192 create_histograms(q, frames_read, nHMM_states, histogram_length, h);
c@243 193
c@243 194 /* cluster the histograms */
c@243 195 int nbsched = 20; /* length of inverse temperature schedule */
c@243 196 double* bsched = (double*) malloc(nbsched*sizeof(double)); /* inverse temperature schedule */
c@243 197 double b0 = 100;
c@243 198 double alpha = 0.7;
c@243 199 bsched[0] = b0;
c@243 200 for (i = 1; i < nbsched; i++)
c@243 201 bsched[i] = alpha * bsched[i-1];
c@243 202 cluster_melt(h, nHMM_states, frames_read, bsched, nbsched, nclusters, neighbour_limit, q);
c@243 203
c@243 204 /* now q holds a sequence of cluster assignments */
c@243 205
c@243 206 free(h);
c@243 207 free(bsched);
c@243 208 }
c@243 209
c@243 210 /* segment constant-Q or chroma features */
c@243 211 void constq_segment(int* q, double** features, int frames_read, int bins, int ncoeff, int feature_type,
c@243 212 int nHMM_states, int histogram_length, int nclusters, int neighbour_limit)
c@243 213 {
c@243 214 int feature_length;
c@243 215 double** chroma;
c@243 216 int i;
c@243 217
c@243 218 if (feature_type == FEATURE_TYPE_CONSTQ)
c@243 219 {
c@283 220 /* fprintf(stderr, "Converting to dB and normalising...\n");
c@283 221 */
c@243 222 mpeg7_constq(features, frames_read, ncoeff);
c@283 223 /*
c@243 224 fprintf(stderr, "Running PCA...\n");
c@283 225 */
c@243 226 /* do PCA on the features (but not the envelope) */
c@243 227 int ncomponents = 20;
c@243 228 pca_project(features, frames_read, ncoeff, ncomponents);
c@243 229
c@243 230 /* copy the envelope so that it immediatly follows the chosen components */
c@243 231 for (i = 0; i < frames_read; i++)
c@243 232 features[i][ncomponents] = features[i][ncoeff];
c@243 233
c@243 234 feature_length = ncomponents + 1;
c@243 235
c@243 236 /**************************************
c@243 237 //TEST
c@243 238 // feature file name
c@243 239 char* dir = "/Users/mark/documents/semma/audio/";
c@243 240 char* file_name = (char*) malloc((strlen(dir) + strlen(trackname) + strlen("_features_c20r8h0.2f0.6.mat") + 1)*sizeof(char));
c@243 241 strcpy(file_name, dir);
c@243 242 strcat(file_name, trackname);
c@243 243 strcat(file_name, "_features_c20r8h0.2f0.6.mat");
c@243 244
c@243 245 // get the features from Matlab from mat-file
c@243 246 int frames_in_file;
c@243 247 readmatarray_size(file_name, 2, &frames_in_file, &feature_length);
c@243 248 readmatarray(file_name, 2, frames_in_file, feature_length, features);
c@243 249 // copy final frame to ensure that we get as many as we expected
c@243 250 int missing_frames = frames_read - frames_in_file;
c@243 251 while (missing_frames > 0)
c@243 252 {
c@243 253 for (i = 0; i < feature_length; i++)
c@243 254 features[frames_read-missing_frames][i] = features[frames_read-missing_frames-1][i];
c@243 255 --missing_frames;
c@243 256 }
c@243 257
c@243 258 free(file_name);
c@243 259 ******************************************/
c@243 260
c@243 261 cluster_segment(q, features, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit);
c@243 262 }
c@243 263
c@243 264 if (feature_type == FEATURE_TYPE_CHROMA)
c@243 265 {
c@283 266 /*
c@243 267 fprintf(stderr, "Converting to chroma features...\n");
c@283 268 */
c@243 269 /* convert constant-Q to normalised chroma features */
c@243 270 chroma = (double**) malloc(frames_read*sizeof(double*));
c@243 271 for (i = 0; i < frames_read; i++)
c@243 272 chroma[i] = (double*) malloc(bins*sizeof(double));
c@243 273 cq2chroma(features, frames_read, ncoeff, bins, chroma);
c@243 274 feature_length = bins;
c@243 275
c@243 276 cluster_segment(q, chroma, frames_read, feature_length, nHMM_states, histogram_length, nclusters, neighbour_limit);
c@243 277
c@243 278 for (i = 0; i < frames_read; i++)
c@243 279 free(chroma[i]);
c@243 280 free(chroma);
c@243 281 }
c@243 282 }
c@243 283
c@243 284
c@243 285