annotate dsp/transforms/FFT.cpp @ 76:4fada56adbb8

* Fix DownBeat off-by-one and another stupid error, both of which I introduced and poor Matthew has had to waste his time fixing... sorry!
author cannam
date Mon, 22 Jun 2009 14:10:03 +0000
parents 769da847732b
children e5907ae6de17
rev   line source
cannam@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
cannam@0 2
cannam@0 3 /*
cannam@0 4 QM DSP Library
cannam@0 5
cannam@0 6 Centre for Digital Music, Queen Mary, University of London.
cannam@0 7 This file is based on Don Cross's public domain FFT implementation.
cannam@0 8 */
cannam@0 9
cannam@0 10 #include "FFT.h"
cannam@55 11
cannam@55 12 #include "maths/MathUtilities.h"
cannam@55 13
cannam@0 14 #include <cmath>
cannam@0 15
cannam@55 16 #include <iostream>
cannam@55 17
cannam@65 18 //#define USE_BUILTIN_FFT 1
cannam@0 19
cannam@64 20 #ifdef USE_BUILTIN_FFT
cannam@64 21
cannam@64 22 FFT::FFT(unsigned int n) :
cannam@64 23 m_n(n),
cannam@64 24 m_private(0)
cannam@0 25 {
cannam@64 26 if( !MathUtilities::isPowerOfTwo(m_n) )
cannam@64 27 {
cannam@64 28 std::cerr << "ERROR: FFT: Non-power-of-two FFT size "
cannam@64 29 << m_n << " not supported in this implementation"
cannam@64 30 << std::endl;
cannam@64 31 return;
cannam@64 32 }
cannam@0 33 }
cannam@0 34
cannam@0 35 FFT::~FFT()
cannam@0 36 {
cannam@0 37
cannam@0 38 }
cannam@0 39
cannam@64 40 FFTReal::FFTReal(unsigned int n) :
cannam@64 41 m_n(n),
cannam@64 42 m_private(0)
cannam@0 43 {
cannam@64 44 m_private = new FFT(m_n);
cannam@64 45 }
cannam@0 46
cannam@64 47 FFTReal::~FFTReal()
cannam@64 48 {
cannam@64 49 delete (FFT *)m_private;
cannam@64 50 }
cannam@64 51
cannam@64 52 void
cannam@64 53 FFTReal::process(bool inverse,
cannam@64 54 const double *realIn,
cannam@64 55 double *realOut, double *imagOut)
cannam@64 56 {
cannam@64 57 ((FFT *)m_private)->process(inverse, realIn, 0, realOut, imagOut);
cannam@64 58 }
cannam@64 59
cannam@64 60 static unsigned int numberOfBitsNeeded(unsigned int p_nSamples)
cannam@64 61 {
cannam@64 62 int i;
cannam@64 63
cannam@64 64 if( p_nSamples < 2 )
cannam@64 65 {
cannam@64 66 return 0;
cannam@64 67 }
cannam@64 68
cannam@64 69 for ( i=0; ; i++ )
cannam@64 70 {
cannam@64 71 if( p_nSamples & (1 << i) ) return i;
cannam@64 72 }
cannam@64 73 }
cannam@64 74
cannam@64 75 static unsigned int reverseBits(unsigned int p_nIndex, unsigned int p_nBits)
cannam@64 76 {
cannam@64 77 unsigned int i, rev;
cannam@64 78
cannam@64 79 for(i=rev=0; i < p_nBits; i++)
cannam@64 80 {
cannam@64 81 rev = (rev << 1) | (p_nIndex & 1);
cannam@64 82 p_nIndex >>= 1;
cannam@64 83 }
cannam@64 84
cannam@64 85 return rev;
cannam@64 86 }
cannam@64 87
cannam@64 88 void
cannam@64 89 FFT::process(bool p_bInverseTransform,
cannam@64 90 const double *p_lpRealIn, const double *p_lpImagIn,
cannam@64 91 double *p_lpRealOut, double *p_lpImagOut)
cannam@64 92 {
cannam@66 93 if (!p_lpRealIn || !p_lpRealOut || !p_lpImagOut) return;
cannam@66 94
cannam@66 95 // std::cerr << "FFT::process(" << m_n << "," << p_bInverseTransform << ")" << std::endl;
cannam@0 96
cannam@0 97 unsigned int NumBits;
cannam@0 98 unsigned int i, j, k, n;
cannam@0 99 unsigned int BlockSize, BlockEnd;
cannam@0 100
cannam@0 101 double angle_numerator = 2.0 * M_PI;
cannam@0 102 double tr, ti;
cannam@0 103
cannam@64 104 if( !MathUtilities::isPowerOfTwo(m_n) )
cannam@0 105 {
cannam@55 106 std::cerr << "ERROR: FFT::process: Non-power-of-two FFT size "
cannam@64 107 << m_n << " not supported in this implementation"
cannam@55 108 << std::endl;
cannam@0 109 return;
cannam@0 110 }
cannam@0 111
cannam@0 112 if( p_bInverseTransform ) angle_numerator = -angle_numerator;
cannam@0 113
cannam@64 114 NumBits = numberOfBitsNeeded ( m_n );
cannam@0 115
cannam@0 116
cannam@64 117 for( i=0; i < m_n; i++ )
cannam@0 118 {
cannam@0 119 j = reverseBits ( i, NumBits );
cannam@0 120 p_lpRealOut[j] = p_lpRealIn[i];
cannam@0 121 p_lpImagOut[j] = (p_lpImagIn == 0) ? 0.0 : p_lpImagIn[i];
cannam@0 122 }
cannam@0 123
cannam@0 124
cannam@0 125 BlockEnd = 1;
cannam@64 126 for( BlockSize = 2; BlockSize <= m_n; BlockSize <<= 1 )
cannam@0 127 {
cannam@0 128 double delta_angle = angle_numerator / (double)BlockSize;
cannam@0 129 double sm2 = -sin ( -2 * delta_angle );
cannam@0 130 double sm1 = -sin ( -delta_angle );
cannam@0 131 double cm2 = cos ( -2 * delta_angle );
cannam@0 132 double cm1 = cos ( -delta_angle );
cannam@0 133 double w = 2 * cm1;
cannam@0 134 double ar[3], ai[3];
cannam@0 135
cannam@64 136 for( i=0; i < m_n; i += BlockSize )
cannam@0 137 {
cannam@0 138
cannam@0 139 ar[2] = cm2;
cannam@0 140 ar[1] = cm1;
cannam@0 141
cannam@0 142 ai[2] = sm2;
cannam@0 143 ai[1] = sm1;
cannam@0 144
cannam@0 145 for ( j=i, n=0; n < BlockEnd; j++, n++ )
cannam@0 146 {
cannam@0 147
cannam@0 148 ar[0] = w*ar[1] - ar[2];
cannam@0 149 ar[2] = ar[1];
cannam@0 150 ar[1] = ar[0];
cannam@0 151
cannam@0 152 ai[0] = w*ai[1] - ai[2];
cannam@0 153 ai[2] = ai[1];
cannam@0 154 ai[1] = ai[0];
cannam@0 155
cannam@0 156 k = j + BlockEnd;
cannam@0 157 tr = ar[0]*p_lpRealOut[k] - ai[0]*p_lpImagOut[k];
cannam@0 158 ti = ar[0]*p_lpImagOut[k] + ai[0]*p_lpRealOut[k];
cannam@0 159
cannam@0 160 p_lpRealOut[k] = p_lpRealOut[j] - tr;
cannam@0 161 p_lpImagOut[k] = p_lpImagOut[j] - ti;
cannam@0 162
cannam@0 163 p_lpRealOut[j] += tr;
cannam@0 164 p_lpImagOut[j] += ti;
cannam@0 165
cannam@0 166 }
cannam@0 167 }
cannam@0 168
cannam@0 169 BlockEnd = BlockSize;
cannam@0 170
cannam@0 171 }
cannam@0 172
cannam@0 173
cannam@0 174 if( p_bInverseTransform )
cannam@0 175 {
cannam@64 176 double denom = (double)m_n;
cannam@0 177
cannam@64 178 for ( i=0; i < m_n; i++ )
cannam@0 179 {
cannam@0 180 p_lpRealOut[i] /= denom;
cannam@0 181 p_lpImagOut[i] /= denom;
cannam@0 182 }
cannam@0 183 }
cannam@0 184 }
cannam@0 185
cannam@64 186 #else
cannam@0 187
cannam@64 188 #include "kissfft/kiss_fft.h"
cannam@64 189 #include "kissfft/kiss_fftr.h"
cannam@0 190
cannam@65 191 struct KissFFTRec {
cannam@65 192 kiss_fft_cfg forward;
cannam@65 193 kiss_fft_cfg inverse;
cannam@65 194 kiss_fft_cpx *in;
cannam@65 195 kiss_fft_cpx *out;
cannam@65 196 };
cannam@65 197
cannam@65 198 FFT::FFT(unsigned int n) :
cannam@65 199 m_n(n),
cannam@65 200 m_private(0)
cannam@65 201 {
cannam@74 202 if (m_n & 1) {
cannam@74 203 std::cerr << "Error: Odd FFT size " << m_n
cannam@74 204 << " not supported in this implementation"
cannam@74 205 << std::endl;
cannam@74 206 return;
cannam@74 207 }
cannam@65 208 KissFFTRec *rec = new KissFFTRec;
cannam@65 209 rec->forward = kiss_fft_alloc(m_n, 0, 0, 0);
cannam@65 210 rec->inverse = kiss_fft_alloc(m_n, 1, 0, 0);
cannam@65 211 rec->in = new kiss_fft_cpx[m_n];
cannam@65 212 rec->out = new kiss_fft_cpx[m_n];
cannam@65 213 m_private = rec;
cannam@65 214 }
cannam@65 215
cannam@65 216 FFT::~FFT()
cannam@65 217 {
cannam@74 218 if (!m_private) return;
cannam@65 219 KissFFTRec *rec = (KissFFTRec *)m_private;
cannam@65 220 kiss_fft_free(rec->forward);
cannam@65 221 kiss_fft_free(rec->inverse);
cannam@65 222 delete[] rec->in;
cannam@65 223 delete[] rec->out;
cannam@65 224 }
cannam@65 225
cannam@65 226 void
cannam@65 227 FFT::process(bool inverse,
cannam@65 228 const double *rin, const double *iin,
cannam@65 229 double *rout, double *iout)
cannam@65 230 {
cannam@74 231 if (!m_private) return;
cannam@65 232 KissFFTRec *rec = (KissFFTRec *)m_private;
cannam@65 233 for (int i = 0; i < m_n; ++i) {
cannam@65 234 rec->in[i].r = rin[i];
cannam@65 235 }
cannam@65 236 if (iin) {
cannam@65 237 for (int i = 0; i < m_n; ++i) {
cannam@65 238 rec->in[i].i = iin[i];
cannam@65 239 }
cannam@65 240 } else {
cannam@65 241 for (int i = 0; i < m_n; ++i) {
cannam@65 242 rec->in[i].i = 0.0;
cannam@65 243 }
cannam@65 244 }
cannam@65 245 if (inverse) {
cannam@65 246 kiss_fft(rec->inverse, rec->in, rec->out);
cannam@65 247 } else {
cannam@65 248 kiss_fft(rec->forward, rec->in, rec->out);
cannam@65 249 }
cannam@65 250 for (int i = 0; i < m_n; ++i) {
cannam@65 251 rout[i] = rec->out[i].r;
cannam@65 252 iout[i] = rec->out[i].i;
cannam@65 253 }
cannam@65 254 }
cannam@65 255
cannam@65 256 struct KissFFTRealRec {
cannam@65 257 kiss_fftr_cfg forward;
cannam@65 258 kiss_fftr_cfg inverse;
cannam@65 259 kiss_fft_cpx *out;
cannam@65 260 };
cannam@65 261
cannam@65 262 FFTReal::FFTReal(unsigned int n) :
cannam@65 263 m_n(n),
cannam@65 264 m_private(0)
cannam@65 265 {
cannam@74 266 if (m_n & 1) {
cannam@74 267 std::cerr << "Error: Odd FFT size " << m_n
cannam@74 268 << " not supported in this implementation"
cannam@74 269 << std::endl;
cannam@74 270 return;
cannam@74 271 }
cannam@65 272 KissFFTRealRec *rec = new KissFFTRealRec;
cannam@65 273 rec->forward = kiss_fftr_alloc(m_n, 0, 0, 0);
cannam@65 274 rec->inverse = kiss_fftr_alloc(m_n, 1, 0, 0);
cannam@65 275 rec->out = new kiss_fft_cpx[m_n];
cannam@65 276 m_private = rec;
cannam@65 277 }
cannam@65 278
cannam@65 279 FFTReal::~FFTReal()
cannam@65 280 {
cannam@74 281 if (!m_private) return;
cannam@65 282 KissFFTRealRec *rec = (KissFFTRealRec *)m_private;
cannam@65 283 kiss_fftr_free(rec->forward);
cannam@65 284 kiss_fftr_free(rec->inverse);
cannam@65 285 delete[] rec->out;
cannam@65 286 }
cannam@65 287
cannam@65 288 void
cannam@65 289 FFTReal::process(bool inverse,
cannam@65 290 const double *rin,
cannam@65 291 double *rout, double *iout)
cannam@65 292 {
cannam@74 293 if (!m_private) return;
cannam@65 294 KissFFTRealRec *rec = (KissFFTRealRec *)m_private;
cannam@65 295 if (inverse) {
cannam@65 296 kiss_fftr(rec->inverse, rin, rec->out);
cannam@73 297 for (int i = 0; i < m_n; ++i) {
cannam@73 298 rout[i] = rec->out[i].r;
cannam@73 299 iout[i] = rec->out[i].i;
cannam@73 300 }
cannam@65 301 } else {
cannam@65 302 kiss_fftr(rec->forward, rin, rec->out);
cannam@73 303 rout[0] = rec->out[0].r;
cannam@73 304 iout[0] = rec->out[0].i;
cannam@73 305 for (int i = 1; i < m_n/2; ++i) {
cannam@73 306 rout[m_n-i] = rout[i] = rec->out[i].r;
cannam@73 307 }
cannam@73 308 for (int i = 1; i < m_n/2; ++i) {
cannam@73 309 iout[i] = rec->out[i].i;
cannam@73 310 iout[m_n-i] = -iout[i];
cannam@73 311 }
cannam@73 312 rout[m_n/2] = rec->out[m_n/2].r;
cannam@73 313 iout[m_n/2] = rec->out[m_n/2].i;
cannam@65 314 }
cannam@65 315 }
cannam@65 316
cannam@64 317 #endif