nikcleju@10
|
1 # -*- coding: utf-8 -*-
|
nikcleju@10
|
2 """
|
nikcleju@10
|
3 Created on Sat Nov 05 18:08:40 2011
|
nikcleju@10
|
4
|
nikcleju@10
|
5 @author: Nic
|
nikcleju@10
|
6 """
|
nikcleju@10
|
7
|
nikcleju@19
|
8 import numpy as np
|
nikcleju@22
|
9 import scipy.io
|
nikcleju@22
|
10 import math
|
nikcleju@22
|
11 import matplotlib.pyplot as plt
|
nikcleju@22
|
12 import matplotlib.cm as cm
|
nikcleju@10
|
13 import pyCSalgos
|
nikcleju@19
|
14 import pyCSalgos.GAP.GAP
|
nikcleju@19
|
15 import pyCSalgos.SL0.SL0_approx
|
nikcleju@10
|
16
|
nikcleju@19
|
17 # Define functions that prepare arguments for each algorithm call
|
nikcleju@22
|
18 def run_gap(y,M,Omega,epsilon):
|
nikcleju@19
|
19 gapparams = {"num_iteration" : 1000,\
|
nikcleju@19
|
20 "greedy_level" : 0.9,\
|
nikcleju@19
|
21 "stopping_coefficient_size" : 1e-4,\
|
nikcleju@19
|
22 "l2solver" : 'pseudoinverse',\
|
nikcleju@19
|
23 "noise_level": epsilon}
|
nikcleju@22
|
24 return pyCSalgos.GAP.GAP.GAP(y,M,M.T,Omega,Omega.T,gapparams,np.zeros(Omega.shape[1]))[0]
|
nikcleju@22
|
25
|
nikcleju@22
|
26 def run_sl0(y,M,Omega,D,U,S,Vt,epsilon,lbd):
|
nikcleju@19
|
27
|
nikcleju@19
|
28 N,n = Omega.shape
|
nikcleju@22
|
29 #D = np.linalg.pinv(Omega)
|
nikcleju@22
|
30 #U,S,Vt = np.linalg.svd(D)
|
nikcleju@19
|
31 aggDupper = np.dot(M,D)
|
nikcleju@19
|
32 aggDlower = Vt[-(N-n):,:]
|
nikcleju@19
|
33 aggD = np.concatenate((aggDupper, lbd * aggDlower))
|
nikcleju@19
|
34 aggy = np.concatenate((y, np.zeros(N-n)))
|
nikcleju@19
|
35
|
nikcleju@22
|
36 sigmamin = 0.001
|
nikcleju@22
|
37 sigma_decrease_factor = 0.5
|
nikcleju@20
|
38 mu_0 = 2
|
nikcleju@20
|
39 L = 10
|
nikcleju@22
|
40 return pyCSalgos.SL0.SL0_approx.SL0_approx(aggD,aggy,epsilon,sigmamin,sigma_decrease_factor,mu_0,L)
|
nikcleju@10
|
41
|
nikcleju@19
|
42 # Define tuples (algorithm setup function, algorithm function, name)
|
nikcleju@22
|
43 gap = (run_gap, 'GAP')
|
nikcleju@22
|
44 sl0 = (run_sl0, 'SL0_approx')
|
nikcleju@10
|
45
|
nikcleju@22
|
46 # Define which algorithms to run
|
nikcleju@22
|
47 # 1. Algorithms not depending on lambda
|
nikcleju@22
|
48 algosN = gap, # tuple
|
nikcleju@22
|
49 # 2. Algorithms depending on lambda (our ABS approach)
|
nikcleju@22
|
50 algosL = sl0, # tuple
|
nikcleju@22
|
51
|
nikcleju@19
|
52 def mainrun():
|
nikcleju@19
|
53
|
nikcleju@22
|
54 nalgosN = len(algosN)
|
nikcleju@22
|
55 nalgosL = len(algosL)
|
nikcleju@22
|
56
|
nikcleju@22
|
57 #Set up experiment parameters
|
nikcleju@22
|
58 d = 50;
|
nikcleju@22
|
59 sigma = 2.0
|
nikcleju@23
|
60 deltas = np.arange(0.05,0.95,0.05)
|
nikcleju@23
|
61 rhos = np.arange(0.05,0.95,0.05)
|
nikcleju@23
|
62 #deltas = np.array([0.05,0.95])
|
nikcleju@23
|
63 #rhos = np.array([0.05,0.95])
|
nikcleju@22
|
64 #deltas = np.array([0.05])
|
nikcleju@22
|
65 #rhos = np.array([0.05])
|
nikcleju@22
|
66 #delta = 0.8;
|
nikcleju@22
|
67 #rho = 0.15;
|
nikcleju@23
|
68 numvects = 100; # Number of vectors to generate
|
nikcleju@20
|
69 SNRdb = 20.; # This is norm(signal)/norm(noise), so power, not energy
|
nikcleju@22
|
70 # Values for lambda
|
nikcleju@22
|
71 #lambdas = [0 10.^linspace(-5, 4, 10)];
|
nikcleju@22
|
72 lambdas = np.concatenate((np.array([0]), 10**np.linspace(-5, 4, 10)))
|
nikcleju@22
|
73
|
nikcleju@22
|
74 meanmatrix = dict()
|
nikcleju@22
|
75 for i,algo in zip(np.arange(nalgosN),algosN):
|
nikcleju@22
|
76 meanmatrix[algo[1]] = np.zeros((rhos.size, deltas.size))
|
nikcleju@22
|
77 for i,algo in zip(np.arange(nalgosL),algosL):
|
nikcleju@22
|
78 meanmatrix[algo[1]] = np.zeros((lambdas.size, rhos.size, deltas.size))
|
nikcleju@22
|
79
|
nikcleju@22
|
80 for idelta,delta in zip(np.arange(deltas.size),deltas):
|
nikcleju@22
|
81 for irho,rho in zip(np.arange(rhos.size),rhos):
|
nikcleju@22
|
82
|
nikcleju@22
|
83 # Generate data and operator
|
nikcleju@22
|
84 Omega,x0,y,M,realnoise = genData(d,sigma,delta,rho,numvects,SNRdb)
|
nikcleju@22
|
85
|
nikcleju@22
|
86 # Run algorithms
|
nikcleju@22
|
87 mrelerrN,mrelerrL = runonce(algosN,algosL,Omega,y,lambdas,realnoise,M,x0)
|
nikcleju@22
|
88
|
nikcleju@22
|
89 for algotuple in algosN:
|
nikcleju@22
|
90 meanmatrix[algotuple[1]][irho,idelta] = 1 - mrelerrN[algotuple[1]]
|
nikcleju@22
|
91 if meanmatrix[algotuple[1]][irho,idelta] < 0 or math.isnan(meanmatrix[algotuple[1]][irho,idelta]):
|
nikcleju@22
|
92 meanmatrix[algotuple[1]][irho,idelta] = 0
|
nikcleju@22
|
93 for algotuple in algosL:
|
nikcleju@22
|
94 for ilbd in np.arange(lambdas.size):
|
nikcleju@22
|
95 meanmatrix[algotuple[1]][ilbd,irho,idelta] = 1 - mrelerrL[algotuple[1]][ilbd]
|
nikcleju@22
|
96 if meanmatrix[algotuple[1]][ilbd,irho,idelta] < 0 or math.isnan(meanmatrix[algotuple[1]][ilbd,irho,idelta]):
|
nikcleju@22
|
97 meanmatrix[algotuple[1]][ilbd,irho,idelta] = 0
|
nikcleju@22
|
98
|
nikcleju@22
|
99 # # Prepare matrices to show
|
nikcleju@22
|
100 # showmats = dict()
|
nikcleju@22
|
101 # for i,algo in zip(np.arange(nalgosN),algosN):
|
nikcleju@22
|
102 # showmats[algo[1]] = np.zeros(rhos.size, deltas.size)
|
nikcleju@22
|
103 # for i,algo in zip(np.arange(nalgosL),algosL):
|
nikcleju@22
|
104 # showmats[algo[1]] = np.zeros(lambdas.size, rhos.size, deltas.size)
|
nikcleju@22
|
105
|
nikcleju@22
|
106 # Save
|
nikcleju@22
|
107 tosave = dict()
|
nikcleju@22
|
108 tosave['meanmatrix'] = meanmatrix
|
nikcleju@22
|
109 tosave['d'] = d
|
nikcleju@22
|
110 tosave['sigma'] = sigma
|
nikcleju@22
|
111 tosave['deltas'] = deltas
|
nikcleju@22
|
112 tosave['rhos'] = rhos
|
nikcleju@22
|
113 tosave['numvects'] = numvects
|
nikcleju@22
|
114 tosave['SNRdb'] = SNRdb
|
nikcleju@22
|
115 tosave['lambdas'] = lambdas
|
nikcleju@22
|
116 try:
|
nikcleju@22
|
117 scipy.io.savemat('ABSapprox.mat',tosave)
|
nikcleju@22
|
118 except TypeError:
|
nikcleju@22
|
119 print "Oops, Type Error"
|
nikcleju@22
|
120 raise
|
nikcleju@22
|
121 # Show
|
nikcleju@23
|
122 # for algotuple in algosN:
|
nikcleju@23
|
123 # plt.figure()
|
nikcleju@23
|
124 # plt.imshow(meanmatrix[algotuple[1]], cmap=cm.gray, interpolation='nearest')
|
nikcleju@23
|
125 # for algotuple in algosL:
|
nikcleju@23
|
126 # for ilbd in np.arange(lambdas.size):
|
nikcleju@23
|
127 # plt.figure()
|
nikcleju@23
|
128 # plt.imshow(meanmatrix[algotuple[1]][ilbd], cmap=cm.gray, interpolation='nearest')
|
nikcleju@23
|
129 # plt.show()
|
nikcleju@22
|
130 print "Finished."
|
nikcleju@22
|
131
|
nikcleju@22
|
132 def genData(d,sigma,delta,rho,numvects,SNRdb):
|
nikcleju@10
|
133
|
nikcleju@19
|
134 # Process parameters
|
nikcleju@20
|
135 noiselevel = 1.0 / (10.0**(SNRdb/10.0));
|
nikcleju@19
|
136 p = round(sigma*d);
|
nikcleju@19
|
137 m = round(delta*d);
|
nikcleju@19
|
138 l = round(d - rho*m);
|
nikcleju@19
|
139
|
nikcleju@19
|
140 # Generate Omega and data based on parameters
|
nikcleju@19
|
141 Omega = pyCSalgos.GAP.GAP.Generate_Analysis_Operator(d, p);
|
nikcleju@19
|
142 # Optionally make Omega more coherent
|
nikcleju@22
|
143 U,S,Vt = np.linalg.svd(Omega);
|
nikcleju@22
|
144 Sdnew = S * (1+np.arange(S.size)) # Make D coherent, not Omega!
|
nikcleju@22
|
145 Snew = np.vstack((np.diag(Sdnew), np.zeros((Omega.shape[0] - Omega.shape[1], Omega.shape[1]))))
|
nikcleju@22
|
146 Omega = np.dot(U , np.dot(Snew,Vt))
|
nikcleju@10
|
147
|
nikcleju@19
|
148 # Generate data
|
nikcleju@19
|
149 x0,y,M,Lambda,realnoise = pyCSalgos.GAP.GAP.Generate_Data_Known_Omega(Omega, d,p,m,l,noiselevel, numvects,'l0');
|
nikcleju@22
|
150
|
nikcleju@22
|
151 return Omega,x0,y,M,realnoise
|
nikcleju@19
|
152
|
nikcleju@22
|
153 def runonce(algosN,algosL,Omega,y,lambdas,realnoise,M,x0):
|
nikcleju@22
|
154
|
nikcleju@22
|
155 d = Omega.shape[1]
|
nikcleju@22
|
156
|
nikcleju@22
|
157 nalgosN = len(algosN)
|
nikcleju@22
|
158 nalgosL = len(algosL)
|
nikcleju@10
|
159
|
nikcleju@19
|
160 xrec = dict()
|
nikcleju@19
|
161 err = dict()
|
nikcleju@19
|
162 relerr = dict()
|
nikcleju@22
|
163
|
nikcleju@22
|
164 # Prepare storage variables for algorithms non-Lambda
|
nikcleju@22
|
165 for i,algo in zip(np.arange(nalgosN),algosN):
|
nikcleju@22
|
166 xrec[algo[1]] = np.zeros((d, y.shape[1]))
|
nikcleju@22
|
167 err[algo[1]] = np.zeros(y.shape[1])
|
nikcleju@22
|
168 relerr[algo[1]] = np.zeros(y.shape[1])
|
nikcleju@22
|
169 # Prepare storage variables for algorithms with Lambda
|
nikcleju@22
|
170 for i,algo in zip(np.arange(nalgosL),algosL):
|
nikcleju@22
|
171 xrec[algo[1]] = np.zeros((lambdas.size, d, y.shape[1]))
|
nikcleju@22
|
172 err[algo[1]] = np.zeros((lambdas.size, y.shape[1]))
|
nikcleju@22
|
173 relerr[algo[1]] = np.zeros((lambdas.size, y.shape[1]))
|
nikcleju@19
|
174
|
nikcleju@22
|
175 # Run algorithms non-Lambda
|
nikcleju@22
|
176 for iy in np.arange(y.shape[1]):
|
nikcleju@22
|
177 for algofunc,strname in algosN:
|
nikcleju@22
|
178 epsilon = 1.1 * np.linalg.norm(realnoise[:,iy])
|
nikcleju@22
|
179 xrec[strname][:,iy] = algofunc(y[:,iy],M,Omega,epsilon)
|
nikcleju@22
|
180 err[strname][iy] = np.linalg.norm(x0[:,iy] - xrec[strname][:,iy])
|
nikcleju@22
|
181 relerr[strname][iy] = err[strname][iy] / np.linalg.norm(x0[:,iy])
|
nikcleju@22
|
182 for algotuple in algosN:
|
nikcleju@22
|
183 print algotuple[1],' : avg relative error = ',np.mean(relerr[strname])
|
nikcleju@22
|
184
|
nikcleju@22
|
185 # Run algorithms with Lambda
|
nikcleju@19
|
186 for ilbd,lbd in zip(np.arange(lambdas.size),lambdas):
|
nikcleju@19
|
187 for iy in np.arange(y.shape[1]):
|
nikcleju@22
|
188 D = np.linalg.pinv(Omega)
|
nikcleju@22
|
189 U,S,Vt = np.linalg.svd(D)
|
nikcleju@22
|
190 for algofunc,strname in algosL:
|
nikcleju@19
|
191 epsilon = 1.1 * np.linalg.norm(realnoise[:,iy])
|
nikcleju@22
|
192 gamma = algofunc(y[:,iy],M,Omega,D,U,S,Vt,epsilon,lbd)
|
nikcleju@22
|
193 xrec[strname][ilbd,:,iy] = np.dot(D,gamma)
|
nikcleju@19
|
194 err[strname][ilbd,iy] = np.linalg.norm(x0[:,iy] - xrec[strname][ilbd,:,iy])
|
nikcleju@19
|
195 relerr[strname][ilbd,iy] = err[strname][ilbd,iy] / np.linalg.norm(x0[:,iy])
|
nikcleju@19
|
196 print 'Lambda = ',lbd,' :'
|
nikcleju@22
|
197 for algotuple in algosL:
|
nikcleju@22
|
198 print ' ',algotuple[1],' : avg relative error = ',np.mean(relerr[strname][ilbd,:])
|
nikcleju@10
|
199
|
nikcleju@22
|
200 # Prepare results
|
nikcleju@22
|
201 mrelerrN = dict()
|
nikcleju@22
|
202 for algotuple in algosN:
|
nikcleju@22
|
203 mrelerrN[algotuple[1]] = np.mean(relerr[algotuple[1]])
|
nikcleju@22
|
204 mrelerrL = dict()
|
nikcleju@22
|
205 for algotuple in algosL:
|
nikcleju@22
|
206 mrelerrL[algotuple[1]] = np.mean(relerr[algotuple[1]],1)
|
nikcleju@22
|
207
|
nikcleju@22
|
208 return mrelerrN,mrelerrL
|
nikcleju@22
|
209
|
nikcleju@19
|
210 # Script main
|
nikcleju@19
|
211 if __name__ == "__main__":
|
nikcleju@19
|
212 mainrun() |