Mercurial > hg > pycsalgos
comparison scripts/ABSapprox.py @ 23:c02eb33d2c54
Prepare to run whole script
author | nikcleju |
---|---|
date | Wed, 09 Nov 2011 00:13:27 +0000 |
parents | 2dd78e37b23a |
children | c07440417bd8 |
comparison
equal
deleted
inserted
replaced
22:2dd78e37b23a | 23:c02eb33d2c54 |
---|---|
55 nalgosL = len(algosL) | 55 nalgosL = len(algosL) |
56 | 56 |
57 #Set up experiment parameters | 57 #Set up experiment parameters |
58 d = 50; | 58 d = 50; |
59 sigma = 2.0 | 59 sigma = 2.0 |
60 #deltas = np.arange(0.05,0.95,0.05) | 60 deltas = np.arange(0.05,0.95,0.05) |
61 #rhos = np.arange(0.05,0.95,0.05) | 61 rhos = np.arange(0.05,0.95,0.05) |
62 deltas = np.array([0.05,0.95]) | 62 #deltas = np.array([0.05,0.95]) |
63 rhos = np.array([0.05,0.95]) | 63 #rhos = np.array([0.05,0.95]) |
64 #deltas = np.array([0.05]) | 64 #deltas = np.array([0.05]) |
65 #rhos = np.array([0.05]) | 65 #rhos = np.array([0.05]) |
66 #delta = 0.8; | 66 #delta = 0.8; |
67 #rho = 0.15; | 67 #rho = 0.15; |
68 numvects = 10; # Number of vectors to generate | 68 numvects = 100; # Number of vectors to generate |
69 SNRdb = 20.; # This is norm(signal)/norm(noise), so power, not energy | 69 SNRdb = 20.; # This is norm(signal)/norm(noise), so power, not energy |
70 # Values for lambda | 70 # Values for lambda |
71 #lambdas = [0 10.^linspace(-5, 4, 10)]; | 71 #lambdas = [0 10.^linspace(-5, 4, 10)]; |
72 lambdas = np.concatenate((np.array([0]), 10**np.linspace(-5, 4, 10))) | 72 lambdas = np.concatenate((np.array([0]), 10**np.linspace(-5, 4, 10))) |
73 | 73 |
117 scipy.io.savemat('ABSapprox.mat',tosave) | 117 scipy.io.savemat('ABSapprox.mat',tosave) |
118 except TypeError: | 118 except TypeError: |
119 print "Oops, Type Error" | 119 print "Oops, Type Error" |
120 raise | 120 raise |
121 # Show | 121 # Show |
122 for algotuple in algosN: | 122 # for algotuple in algosN: |
123 plt.figure() | 123 # plt.figure() |
124 plt.imshow(meanmatrix[algotuple[1]], cmap=cm.gray, interpolation='nearest') | 124 # plt.imshow(meanmatrix[algotuple[1]], cmap=cm.gray, interpolation='nearest') |
125 for algotuple in algosL: | 125 # for algotuple in algosL: |
126 for ilbd in np.arange(lambdas.size): | 126 # for ilbd in np.arange(lambdas.size): |
127 plt.figure() | 127 # plt.figure() |
128 plt.imshow(meanmatrix[algotuple[1]][ilbd], cmap=cm.gray, interpolation='nearest') | 128 # plt.imshow(meanmatrix[algotuple[1]][ilbd], cmap=cm.gray, interpolation='nearest') |
129 plt.show() | 129 # plt.show() |
130 print "Finished." | 130 print "Finished." |
131 | 131 |
132 def genData(d,sigma,delta,rho,numvects,SNRdb): | 132 def genData(d,sigma,delta,rho,numvects,SNRdb): |
133 | 133 |
134 # Process parameters | 134 # Process parameters |