annotate scripts/ABSapprox.py @ 19:ef0629f859a3

Working approximation script
author nikcleju
date Mon, 07 Nov 2011 22:15:13 +0000
parents edb5a287e0bb
children 45255b0a6dba
rev   line source
nikcleju@10 1 # -*- coding: utf-8 -*-
nikcleju@10 2 """
nikcleju@10 3 Created on Sat Nov 05 18:08:40 2011
nikcleju@10 4
nikcleju@10 5 @author: Nic
nikcleju@10 6 """
nikcleju@10 7
nikcleju@19 8 import numpy as np
nikcleju@10 9 import pyCSalgos
nikcleju@19 10 import pyCSalgos.GAP.GAP
nikcleju@19 11 import pyCSalgos.SL0.SL0_approx
nikcleju@10 12
nikcleju@19 13 # Define functions that prepare arguments for each algorithm call
nikcleju@10 14 def gap_paramsetup(y,M,Omega,epsilon,lbd):
nikcleju@19 15 gapparams = {"num_iteration" : 1000,\
nikcleju@19 16 "greedy_level" : 0.9,\
nikcleju@19 17 "stopping_coefficient_size" : 1e-4,\
nikcleju@19 18 "l2solver" : 'pseudoinverse',\
nikcleju@19 19 "noise_level": epsilon}
nikcleju@19 20 return y,M,M.T,Omega,Omega.T,gapparams,np.zeros(Omega.shape[1])
nikcleju@19 21 def sl0_paramsetup(y,M,Omega,epsilon,lbd):
nikcleju@19 22
nikcleju@19 23 N,n = Omega.shape
nikcleju@19 24 D = np.linalg.pinv(Omega)
nikcleju@19 25 U,S,Vt = np.linalg.svd(D)
nikcleju@19 26 aggDupper = np.dot(M,D)
nikcleju@19 27 aggDlower = Vt[-(N-n):,:]
nikcleju@19 28 aggD = np.concatenate((aggDupper, lbd * aggDlower))
nikcleju@19 29 aggy = np.concatenate((y, np.zeros(N-n)))
nikcleju@19 30
nikcleju@19 31 sigmamin = 0.1
nikcleju@19 32 return aggD,aggy,epsilon,sigmamin
nikcleju@10 33
nikcleju@19 34 # Define tuples (algorithm setup function, algorithm function, name)
nikcleju@19 35 gap = (gap_paramsetup, pyCSalgos.GAP.GAP.GAP, 'GAP')
nikcleju@19 36 sl0 = (sl0_paramsetup, pyCSalgos.SL0.SL0_approx.SL0_approx, 'SL0_approx')
nikcleju@10 37
nikcleju@19 38 # Main function
nikcleju@19 39 def mainrun():
nikcleju@10 40
nikcleju@19 41 # Define which algorithms to run
nikcleju@19 42 algos = (gap, sl0)
nikcleju@19 43 numalgos = len(algos)
nikcleju@19 44
nikcleju@19 45 # Set up experiment parameters
nikcleju@19 46 sigma = 2.0;
nikcleju@19 47 delta = 0.8;
nikcleju@19 48 rho = 0.15;
nikcleju@19 49 numvects = 2; # Number of vectors to generate
nikcleju@19 50 SNRdb = 20; # This is norm(signal)/norm(noise), so power, not energy
nikcleju@10 51
nikcleju@19 52 # Process parameters
nikcleju@19 53 noiselevel = 1 / (10^(SNRdb/10));
nikcleju@19 54 d = 50;
nikcleju@19 55 p = round(sigma*d);
nikcleju@19 56 m = round(delta*d);
nikcleju@19 57 l = round(d - rho*m);
nikcleju@19 58
nikcleju@19 59 # Generate Omega and data based on parameters
nikcleju@19 60 Omega = pyCSalgos.GAP.GAP.Generate_Analysis_Operator(d, p);
nikcleju@19 61 # Optionally make Omega more coherent
nikcleju@19 62 #[U, S, Vt] = np.linalg.svd(Omega);
nikcleju@19 63 #Sdnew = np.diag(S) * (1+np.arange(np.diag(S).size)); % Make D coherent, not Omega!
nikcleju@19 64 #Snew = [diag(Sdnew); zeros(size(S,1) - size(S,2), size(S,2))];
nikcleju@19 65 #Omega = U * Snew * V';
nikcleju@10 66
nikcleju@19 67 # Generate data
nikcleju@19 68 x0,y,M,Lambda,realnoise = pyCSalgos.GAP.GAP.Generate_Data_Known_Omega(Omega, d,p,m,l,noiselevel, numvects,'l0');
nikcleju@19 69
nikcleju@19 70 # Values for lambda
nikcleju@19 71 #lambdas = [0 10.^linspace(-5, 4, 10)];
nikcleju@19 72 lambdas = np.concatenate((np.array([0]), 10**np.linspace(-5, 4, 10)))
nikcleju@10 73
nikcleju@19 74 xrec = dict()
nikcleju@19 75 err = dict()
nikcleju@19 76 relerr = dict()
nikcleju@19 77 for i,algo in zip(np.arange(numalgos),algos):
nikcleju@19 78 xrec[algo[2]] = np.zeros((lambdas.size, d, y.shape[1]))
nikcleju@19 79 err[algo[2]] = np.zeros((lambdas.size, y.shape[1]))
nikcleju@19 80 relerr[algo[2]] = np.zeros((lambdas.size, y.shape[1]))
nikcleju@19 81
nikcleju@19 82 for ilbd,lbd in zip(np.arange(lambdas.size),lambdas):
nikcleju@19 83 for iy in np.arange(y.shape[1]):
nikcleju@19 84 for algosetupfunc,algofunc,strname in algos:
nikcleju@19 85 epsilon = 1.1 * np.linalg.norm(realnoise[:,iy])
nikcleju@19 86
nikcleju@19 87 inparams = algosetupfunc(y[:,iy],M,Omega,epsilon,lbd)
nikcleju@19 88 xrec[strname][ilbd,:,iy] = algofunc(*inparams)[0]
nikcleju@19 89
nikcleju@19 90 err[strname][ilbd,iy] = np.linalg.norm(x0[:,iy] - xrec[strname][ilbd,:,iy])
nikcleju@19 91 relerr[strname][ilbd,iy] = err[strname][ilbd,iy] / np.linalg.norm(x0[:,iy])
nikcleju@19 92
nikcleju@19 93 print 'Lambda = ',lbd,' :'
nikcleju@19 94 for strname in relerr:
nikcleju@19 95 print ' ',strname,' : avg relative error = ',np.mean(relerr[strname][ilbd,:])
nikcleju@10 96
nikcleju@10 97
nikcleju@10 98
nikcleju@19 99 # Script main
nikcleju@19 100 if __name__ == "__main__":
nikcleju@19 101 mainrun()