m@9
|
1 {
|
m@9
|
2 "cells": [
|
m@9
|
3 {
|
m@9
|
4 "cell_type": "code",
|
m@9
|
5 "execution_count": 7,
|
m@9
|
6 "metadata": {
|
m@9
|
7 "collapsed": false
|
m@9
|
8 },
|
m@9
|
9 "outputs": [],
|
m@9
|
10 "source": [
|
m@9
|
11 "import numpy as np\n",
|
m@9
|
12 "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA\n",
|
m@9
|
13 "\n",
|
m@9
|
14 "import sys\n",
|
m@9
|
15 "sys.path.append('../')\n",
|
m@9
|
16 "import scripts.map_and_average as mapper\n",
|
m@9
|
17 "import scripts.util_feature_learning as util_feature_learning"
|
m@9
|
18 ]
|
m@9
|
19 },
|
m@9
|
20 {
|
m@9
|
21 "cell_type": "markdown",
|
m@9
|
22 "metadata": {},
|
m@9
|
23 "source": [
|
m@9
|
24 "## Load data"
|
m@9
|
25 ]
|
m@9
|
26 },
|
m@9
|
27 {
|
m@9
|
28 "cell_type": "code",
|
m@9
|
29 "execution_count": 8,
|
m@9
|
30 "metadata": {
|
m@9
|
31 "collapsed": false
|
m@9
|
32 },
|
m@9
|
33 "outputs": [
|
m@9
|
34 {
|
m@9
|
35 "name": "stdout",
|
m@9
|
36 "output_type": "stream",
|
m@9
|
37 "text": [
|
m@9
|
38 "/import/c4dm-04/mariap/train_data_melodia_8.pickle\n"
|
m@9
|
39 ]
|
m@9
|
40 },
|
m@9
|
41 {
|
m@9
|
42 "ename": "IOError",
|
m@9
|
43 "evalue": "[Errno 2] No such file or directory: '/import/c4dm-04/mariap/train_data_melodia_8.pickle'",
|
m@9
|
44 "output_type": "error",
|
m@9
|
45 "traceback": [
|
m@9
|
46 "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
m@9
|
47 "\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)",
|
m@9
|
48 "\u001b[0;32m<ipython-input-8-aa3c9e978b25>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtrainset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtestset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmapper\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_train_val_test_sets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
m@9
|
49 "\u001b[0;32m/Users/mariapanteli/Documents/QMUL/Code/MyPythonCode/plosone_underreview/scripts/map_and_average.pyc\u001b[0m in \u001b[0;36mload_train_val_test_sets\u001b[0;34m()\u001b[0m\n\u001b[1;32m 69\u001b[0m '''\n\u001b[1;32m 70\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 71\u001b[0;31m \u001b[0mtrainset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 72\u001b[0m \u001b[0mvalset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0mtestset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
m@9
|
50 "\u001b[0;32m/Users/mariapanteli/Documents/QMUL/Code/MyPythonCode/plosone_underreview/scripts/map_and_average.pyc\u001b[0m in \u001b[0;36mload_data_from_pickle\u001b[0;34m(pickle_file)\u001b[0m\n\u001b[1;32m 56\u001b[0m '''load frame based features and labels from pickle file\n\u001b[1;32m 57\u001b[0m '''\n\u001b[0;32m---> 58\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpickle_file\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 59\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maudiolabels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[0;31m# remove 'unknown' and 'unidentified' country\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
m@9
|
51 "\u001b[0;31mIOError\u001b[0m: [Errno 2] No such file or directory: '/import/c4dm-04/mariap/train_data_melodia_8.pickle'"
|
m@9
|
52 ]
|
m@9
|
53 }
|
m@9
|
54 ],
|
m@9
|
55 "source": [
|
m@9
|
56 "trainset, valset, testset = mapper.load_train_val_test_sets()\n",
|
m@9
|
57 "traindata, trainlabels, trainaudiolabels = trainset\n",
|
m@9
|
58 "valdata, vallabels, valaudiolabels = valset\n",
|
m@9
|
59 "testdata, testlabels, testaudiolabels = testset\n",
|
m@9
|
60 "labels = np.concatenate((trainlabels, vallabels, testlabels)).ravel()\n",
|
m@9
|
61 "audiolabels = np.concatenate((trainaudiolabels, valaudiolabels, testaudiolabels)).ravel()\n",
|
m@9
|
62 "print traindata.shape, valdata.shape, testdata.shape"
|
m@9
|
63 ]
|
m@9
|
64 },
|
m@9
|
65 {
|
m@9
|
66 "cell_type": "markdown",
|
m@9
|
67 "metadata": {},
|
m@9
|
68 "source": [
|
m@9
|
69 "## explain LDA"
|
m@9
|
70 ]
|
m@9
|
71 },
|
m@9
|
72 {
|
m@9
|
73 "cell_type": "code",
|
m@9
|
74 "execution_count": null,
|
m@9
|
75 "metadata": {
|
m@9
|
76 "collapsed": true
|
m@9
|
77 },
|
m@9
|
78 "outputs": [],
|
m@9
|
79 "source": [
|
m@9
|
80 "min_variance = 0.99\n",
|
m@9
|
81 "feat_labels, feat_inds = mapper.get_feat_inds(n_dim=traindata.shape[1])\n",
|
m@9
|
82 "for i in range(len(feat_inds)):\n",
|
m@9
|
83 " print \"mapping \" + feat_labels[i]\n",
|
m@9
|
84 " inds = feat_inds[i]\n",
|
m@9
|
85 " ssm_feat = util_feature_learning.Transformer()\n",
|
m@9
|
86 " if min_variance is not None:\n",
|
m@9
|
87 " ssm_feat.fit_data(traindata[:, inds], trainlabels, n_components=len(inds), pca_only=True)\n",
|
m@9
|
88 " n_components = np.where(ssm_feat.pca_transformer.explained_variance_ratio_.cumsum()>min_variance)[0][0]+1\n",
|
m@9
|
89 " print n_components, len(inds)\n",
|
m@9
|
90 " ssm_feat.fit_lda_data(traindata[:, inds], trainlabels, n_components=n_components)\n",
|
m@9
|
91 "\n",
|
m@9
|
92 " WW = ssm_feat.lda_transformer.scalings_\n",
|
m@9
|
93 " plt.figure()\n",
|
m@9
|
94 " plt.imshow(WW[:, :n_components].T, aspect='auto')\n",
|
m@9
|
95 " plt.colorbar()"
|
m@9
|
96 ]
|
m@9
|
97 },
|
m@9
|
98 {
|
m@9
|
99 "cell_type": "markdown",
|
m@9
|
100 "metadata": {},
|
m@9
|
101 "source": [
|
m@9
|
102 "## explain classifier"
|
m@9
|
103 ]
|
m@9
|
104 },
|
m@9
|
105 {
|
m@9
|
106 "cell_type": "code",
|
m@9
|
107 "execution_count": null,
|
m@9
|
108 "metadata": {
|
m@9
|
109 "collapsed": true
|
m@9
|
110 },
|
m@9
|
111 "outputs": [],
|
m@9
|
112 "source": [
|
m@9
|
113 "X_list, Y, Yaudio = pickle.load(open('../data/lda_data_melodia_8.pickle','rb'))\n",
|
m@9
|
114 "Xrhy, Xmel, Xmfc, Xchr = X_list\n",
|
m@9
|
115 "X = np.concatenate((Xrhy, Xmel, Xmfc, Xchr), axis=1)"
|
m@9
|
116 ]
|
m@9
|
117 },
|
m@9
|
118 {
|
m@9
|
119 "cell_type": "code",
|
m@9
|
120 "execution_count": null,
|
m@9
|
121 "metadata": {
|
m@9
|
122 "collapsed": true
|
m@9
|
123 },
|
m@9
|
124 "outputs": [],
|
m@9
|
125 "source": [
|
m@9
|
126 "ssm_feat.classify_and_save(X_train, Y_train, X_test, Y_test, transform_label=\" \")"
|
m@9
|
127 ]
|
m@9
|
128 },
|
m@9
|
129 {
|
m@9
|
130 "cell_type": "code",
|
m@9
|
131 "execution_count": null,
|
m@9
|
132 "metadata": {
|
m@9
|
133 "collapsed": true
|
m@9
|
134 },
|
m@9
|
135 "outputs": [],
|
m@9
|
136 "source": [
|
m@9
|
137 "def components_plot(lda_transformer, XX, n_comp=42, figurename=None):\n",
|
m@9
|
138 " WW=lda_transformer.scalings_\n",
|
m@9
|
139 " Xlda=lda_transformer.transform(XX)\n",
|
m@9
|
140 " Xww=numpy.dot(XX, WW[:, :n_comp])\n",
|
m@9
|
141 " plt.figure()\n",
|
m@9
|
142 " plt.imshow(Xlda - Xww, aspect='auto')\n",
|
m@9
|
143 " plt.figure()\n",
|
m@9
|
144 " plt.imshow(Xlda, aspect='auto')\n",
|
m@9
|
145 " plt.figure()\n",
|
m@9
|
146 " plt.imshow(Xww, aspect='auto')\n",
|
m@9
|
147 " plt.figure()\n",
|
m@9
|
148 " plt.imshow(WW[:, :n_comp], aspect='auto') # this explains the weights up to n_components=64\n",
|
m@9
|
149 " if figurename is not None:\n",
|
m@9
|
150 " plt.savefig(figurename)\n",
|
m@9
|
151 "\n",
|
m@9
|
152 "XX = traindata[:, inds]\n",
|
m@9
|
153 "components_plot(ssm_feat.lda_transformer, XX, n_comp=n_components)"
|
m@9
|
154 ]
|
m@9
|
155 }
|
m@9
|
156 ],
|
m@9
|
157 "metadata": {
|
m@9
|
158 "kernelspec": {
|
m@9
|
159 "display_name": "Python 2",
|
m@9
|
160 "language": "python",
|
m@9
|
161 "name": "python2"
|
m@9
|
162 },
|
m@9
|
163 "language_info": {
|
m@9
|
164 "codemirror_mode": {
|
m@9
|
165 "name": "ipython",
|
m@9
|
166 "version": 2
|
m@9
|
167 },
|
m@9
|
168 "file_extension": ".py",
|
m@9
|
169 "mimetype": "text/x-python",
|
m@9
|
170 "name": "python",
|
m@9
|
171 "nbconvert_exporter": "python",
|
m@9
|
172 "pygments_lexer": "ipython2",
|
m@9
|
173 "version": "2.7.12"
|
m@9
|
174 }
|
m@9
|
175 },
|
m@9
|
176 "nbformat": 4,
|
m@9
|
177 "nbformat_minor": 0
|
m@9
|
178 }
|