annotate notebooks/explain_components.ipynb @ 9:c4841876a8ff branch-tests

adding notebooks and trying to explain classifier coefficients
author Maria Panteli <m.x.panteli@gmail.com>
date Mon, 11 Sep 2017 19:06:40 +0100
parents
children a1a9b472bcdb
rev   line source
m@9 1 {
m@9 2 "cells": [
m@9 3 {
m@9 4 "cell_type": "code",
m@9 5 "execution_count": 7,
m@9 6 "metadata": {
m@9 7 "collapsed": false
m@9 8 },
m@9 9 "outputs": [],
m@9 10 "source": [
m@9 11 "import numpy as np\n",
m@9 12 "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA\n",
m@9 13 "\n",
m@9 14 "import sys\n",
m@9 15 "sys.path.append('../')\n",
m@9 16 "import scripts.map_and_average as mapper\n",
m@9 17 "import scripts.util_feature_learning as util_feature_learning"
m@9 18 ]
m@9 19 },
m@9 20 {
m@9 21 "cell_type": "markdown",
m@9 22 "metadata": {},
m@9 23 "source": [
m@9 24 "## Load data"
m@9 25 ]
m@9 26 },
m@9 27 {
m@9 28 "cell_type": "code",
m@9 29 "execution_count": 8,
m@9 30 "metadata": {
m@9 31 "collapsed": false
m@9 32 },
m@9 33 "outputs": [
m@9 34 {
m@9 35 "name": "stdout",
m@9 36 "output_type": "stream",
m@9 37 "text": [
m@9 38 "/import/c4dm-04/mariap/train_data_melodia_8.pickle\n"
m@9 39 ]
m@9 40 },
m@9 41 {
m@9 42 "ename": "IOError",
m@9 43 "evalue": "[Errno 2] No such file or directory: '/import/c4dm-04/mariap/train_data_melodia_8.pickle'",
m@9 44 "output_type": "error",
m@9 45 "traceback": [
m@9 46 "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
m@9 47 "\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)",
m@9 48 "\u001b[0;32m<ipython-input-8-aa3c9e978b25>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtrainset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtestset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmapper\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_train_val_test_sets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
m@9 49 "\u001b[0;32m/Users/mariapanteli/Documents/QMUL/Code/MyPythonCode/plosone_underreview/scripts/map_and_average.pyc\u001b[0m in \u001b[0;36mload_train_val_test_sets\u001b[0;34m()\u001b[0m\n\u001b[1;32m 69\u001b[0m '''\n\u001b[1;32m 70\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 71\u001b[0;31m \u001b[0mtrainset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 72\u001b[0m \u001b[0mvalset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0mtestset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
m@9 50 "\u001b[0;32m/Users/mariapanteli/Documents/QMUL/Code/MyPythonCode/plosone_underreview/scripts/map_and_average.pyc\u001b[0m in \u001b[0;36mload_data_from_pickle\u001b[0;34m(pickle_file)\u001b[0m\n\u001b[1;32m 56\u001b[0m '''load frame based features and labels from pickle file\n\u001b[1;32m 57\u001b[0m '''\n\u001b[0;32m---> 58\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpickle_file\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 59\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maudiolabels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[0;31m# remove 'unknown' and 'unidentified' country\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
m@9 51 "\u001b[0;31mIOError\u001b[0m: [Errno 2] No such file or directory: '/import/c4dm-04/mariap/train_data_melodia_8.pickle'"
m@9 52 ]
m@9 53 }
m@9 54 ],
m@9 55 "source": [
m@9 56 "trainset, valset, testset = mapper.load_train_val_test_sets()\n",
m@9 57 "traindata, trainlabels, trainaudiolabels = trainset\n",
m@9 58 "valdata, vallabels, valaudiolabels = valset\n",
m@9 59 "testdata, testlabels, testaudiolabels = testset\n",
m@9 60 "labels = np.concatenate((trainlabels, vallabels, testlabels)).ravel()\n",
m@9 61 "audiolabels = np.concatenate((trainaudiolabels, valaudiolabels, testaudiolabels)).ravel()\n",
m@9 62 "print traindata.shape, valdata.shape, testdata.shape"
m@9 63 ]
m@9 64 },
m@9 65 {
m@9 66 "cell_type": "markdown",
m@9 67 "metadata": {},
m@9 68 "source": [
m@9 69 "## explain LDA"
m@9 70 ]
m@9 71 },
m@9 72 {
m@9 73 "cell_type": "code",
m@9 74 "execution_count": null,
m@9 75 "metadata": {
m@9 76 "collapsed": true
m@9 77 },
m@9 78 "outputs": [],
m@9 79 "source": [
m@9 80 "min_variance = 0.99\n",
m@9 81 "feat_labels, feat_inds = mapper.get_feat_inds(n_dim=traindata.shape[1])\n",
m@9 82 "for i in range(len(feat_inds)):\n",
m@9 83 " print \"mapping \" + feat_labels[i]\n",
m@9 84 " inds = feat_inds[i]\n",
m@9 85 " ssm_feat = util_feature_learning.Transformer()\n",
m@9 86 " if min_variance is not None:\n",
m@9 87 " ssm_feat.fit_data(traindata[:, inds], trainlabels, n_components=len(inds), pca_only=True)\n",
m@9 88 " n_components = np.where(ssm_feat.pca_transformer.explained_variance_ratio_.cumsum()>min_variance)[0][0]+1\n",
m@9 89 " print n_components, len(inds)\n",
m@9 90 " ssm_feat.fit_lda_data(traindata[:, inds], trainlabels, n_components=n_components)\n",
m@9 91 "\n",
m@9 92 " WW = ssm_feat.lda_transformer.scalings_\n",
m@9 93 " plt.figure()\n",
m@9 94 " plt.imshow(WW[:, :n_components].T, aspect='auto')\n",
m@9 95 " plt.colorbar()"
m@9 96 ]
m@9 97 },
m@9 98 {
m@9 99 "cell_type": "markdown",
m@9 100 "metadata": {},
m@9 101 "source": [
m@9 102 "## explain classifier"
m@9 103 ]
m@9 104 },
m@9 105 {
m@9 106 "cell_type": "code",
m@9 107 "execution_count": null,
m@9 108 "metadata": {
m@9 109 "collapsed": true
m@9 110 },
m@9 111 "outputs": [],
m@9 112 "source": [
m@9 113 "X_list, Y, Yaudio = pickle.load(open('../data/lda_data_melodia_8.pickle','rb'))\n",
m@9 114 "Xrhy, Xmel, Xmfc, Xchr = X_list\n",
m@9 115 "X = np.concatenate((Xrhy, Xmel, Xmfc, Xchr), axis=1)"
m@9 116 ]
m@9 117 },
m@9 118 {
m@9 119 "cell_type": "code",
m@9 120 "execution_count": null,
m@9 121 "metadata": {
m@9 122 "collapsed": true
m@9 123 },
m@9 124 "outputs": [],
m@9 125 "source": [
m@9 126 "ssm_feat.classify_and_save(X_train, Y_train, X_test, Y_test, transform_label=\" \")"
m@9 127 ]
m@9 128 },
m@9 129 {
m@9 130 "cell_type": "code",
m@9 131 "execution_count": null,
m@9 132 "metadata": {
m@9 133 "collapsed": true
m@9 134 },
m@9 135 "outputs": [],
m@9 136 "source": [
m@9 137 "def components_plot(lda_transformer, XX, n_comp=42, figurename=None):\n",
m@9 138 " WW=lda_transformer.scalings_\n",
m@9 139 " Xlda=lda_transformer.transform(XX)\n",
m@9 140 " Xww=numpy.dot(XX, WW[:, :n_comp])\n",
m@9 141 " plt.figure()\n",
m@9 142 " plt.imshow(Xlda - Xww, aspect='auto')\n",
m@9 143 " plt.figure()\n",
m@9 144 " plt.imshow(Xlda, aspect='auto')\n",
m@9 145 " plt.figure()\n",
m@9 146 " plt.imshow(Xww, aspect='auto')\n",
m@9 147 " plt.figure()\n",
m@9 148 " plt.imshow(WW[:, :n_comp], aspect='auto') # this explains the weights up to n_components=64\n",
m@9 149 " if figurename is not None:\n",
m@9 150 " plt.savefig(figurename)\n",
m@9 151 "\n",
m@9 152 "XX = traindata[:, inds]\n",
m@9 153 "components_plot(ssm_feat.lda_transformer, XX, n_comp=n_components)"
m@9 154 ]
m@9 155 }
m@9 156 ],
m@9 157 "metadata": {
m@9 158 "kernelspec": {
m@9 159 "display_name": "Python 2",
m@9 160 "language": "python",
m@9 161 "name": "python2"
m@9 162 },
m@9 163 "language_info": {
m@9 164 "codemirror_mode": {
m@9 165 "name": "ipython",
m@9 166 "version": 2
m@9 167 },
m@9 168 "file_extension": ".py",
m@9 169 "mimetype": "text/x-python",
m@9 170 "name": "python",
m@9 171 "nbconvert_exporter": "python",
m@9 172 "pygments_lexer": "ipython2",
m@9 173 "version": "2.7.12"
m@9 174 }
m@9 175 },
m@9 176 "nbformat": 4,
m@9 177 "nbformat_minor": 0
m@9 178 }