Mercurial > hg > plosone_underreview
view notebooks/explain_components.ipynb @ 9:c4841876a8ff branch-tests
adding notebooks and trying to explain classifier coefficients
author | Maria Panteli <m.x.panteli@gmail.com> |
---|---|
date | Mon, 11 Sep 2017 19:06:40 +0100 |
parents | |
children | a1a9b472bcdb |
line wrap: on
line source
{ "cells": [ { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA\n", "\n", "import sys\n", "sys.path.append('../')\n", "import scripts.map_and_average as mapper\n", "import scripts.util_feature_learning as util_feature_learning" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load data" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/import/c4dm-04/mariap/train_data_melodia_8.pickle\n" ] }, { "ename": "IOError", "evalue": "[Errno 2] No such file or directory: '/import/c4dm-04/mariap/train_data_melodia_8.pickle'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-8-aa3c9e978b25>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtrainset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtestset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmapper\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_train_val_test_sets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/Users/mariapanteli/Documents/QMUL/Code/MyPythonCode/plosone_underreview/scripts/map_and_average.pyc\u001b[0m in \u001b[0;36mload_train_val_test_sets\u001b[0;34m()\u001b[0m\n\u001b[1;32m 69\u001b[0m '''\n\u001b[1;32m 70\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 71\u001b[0;31m \u001b[0mtrainset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 72\u001b[0m \u001b[0mvalset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0mtestset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/mariapanteli/Documents/QMUL/Code/MyPythonCode/plosone_underreview/scripts/map_and_average.pyc\u001b[0m in \u001b[0;36mload_data_from_pickle\u001b[0;34m(pickle_file)\u001b[0m\n\u001b[1;32m 56\u001b[0m '''load frame based features and labels from pickle file\n\u001b[1;32m 57\u001b[0m '''\n\u001b[0;32m---> 58\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpickle_file\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 59\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maudiolabels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[0;31m# remove 'unknown' and 'unidentified' country\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mIOError\u001b[0m: [Errno 2] No such file or directory: '/import/c4dm-04/mariap/train_data_melodia_8.pickle'" ] } ], "source": [ "trainset, valset, testset = mapper.load_train_val_test_sets()\n", "traindata, trainlabels, trainaudiolabels = trainset\n", "valdata, vallabels, valaudiolabels = valset\n", "testdata, testlabels, testaudiolabels = testset\n", "labels = np.concatenate((trainlabels, vallabels, testlabels)).ravel()\n", "audiolabels = np.concatenate((trainaudiolabels, valaudiolabels, testaudiolabels)).ravel()\n", "print traindata.shape, valdata.shape, testdata.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## explain LDA" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "min_variance = 0.99\n", "feat_labels, feat_inds = mapper.get_feat_inds(n_dim=traindata.shape[1])\n", "for i in range(len(feat_inds)):\n", " print \"mapping \" + feat_labels[i]\n", " inds = feat_inds[i]\n", " ssm_feat = util_feature_learning.Transformer()\n", " if min_variance is not None:\n", " ssm_feat.fit_data(traindata[:, inds], trainlabels, n_components=len(inds), pca_only=True)\n", " n_components = np.where(ssm_feat.pca_transformer.explained_variance_ratio_.cumsum()>min_variance)[0][0]+1\n", " print n_components, len(inds)\n", " ssm_feat.fit_lda_data(traindata[:, inds], trainlabels, n_components=n_components)\n", "\n", " WW = ssm_feat.lda_transformer.scalings_\n", " plt.figure()\n", " plt.imshow(WW[:, :n_components].T, aspect='auto')\n", " plt.colorbar()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## explain classifier" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "X_list, Y, Yaudio = pickle.load(open('../data/lda_data_melodia_8.pickle','rb'))\n", "Xrhy, Xmel, Xmfc, Xchr = X_list\n", "X = np.concatenate((Xrhy, Xmel, Xmfc, Xchr), axis=1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "ssm_feat.classify_and_save(X_train, Y_train, X_test, Y_test, transform_label=\" \")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def components_plot(lda_transformer, XX, n_comp=42, figurename=None):\n", " WW=lda_transformer.scalings_\n", " Xlda=lda_transformer.transform(XX)\n", " Xww=numpy.dot(XX, WW[:, :n_comp])\n", " plt.figure()\n", " plt.imshow(Xlda - Xww, aspect='auto')\n", " plt.figure()\n", " plt.imshow(Xlda, aspect='auto')\n", " plt.figure()\n", " plt.imshow(Xww, aspect='auto')\n", " plt.figure()\n", " plt.imshow(WW[:, :n_comp], aspect='auto') # this explains the weights up to n_components=64\n", " if figurename is not None:\n", " plt.savefig(figurename)\n", "\n", "XX = traindata[:, inds]\n", "components_plot(ssm_feat.lda_transformer, XX, n_comp=n_components)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }