Mercurial > hg > plosone_underreview
diff notebooks/explain_components.ipynb @ 9:c4841876a8ff branch-tests
adding notebooks and trying to explain classifier coefficients
author | Maria Panteli <m.x.panteli@gmail.com> |
---|---|
date | Mon, 11 Sep 2017 19:06:40 +0100 |
parents | |
children | a1a9b472bcdb |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/notebooks/explain_components.ipynb Mon Sep 11 19:06:40 2017 +0100 @@ -0,0 +1,178 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA\n", + "\n", + "import sys\n", + "sys.path.append('../')\n", + "import scripts.map_and_average as mapper\n", + "import scripts.util_feature_learning as util_feature_learning" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load data" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/import/c4dm-04/mariap/train_data_melodia_8.pickle\n" + ] + }, + { + "ename": "IOError", + "evalue": "[Errno 2] No such file or directory: '/import/c4dm-04/mariap/train_data_melodia_8.pickle'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-8-aa3c9e978b25>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtrainset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtestset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmapper\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_train_val_test_sets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/Users/mariapanteli/Documents/QMUL/Code/MyPythonCode/plosone_underreview/scripts/map_and_average.pyc\u001b[0m in \u001b[0;36mload_train_val_test_sets\u001b[0;34m()\u001b[0m\n\u001b[1;32m 69\u001b[0m '''\n\u001b[1;32m 70\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 71\u001b[0;31m \u001b[0mtrainset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 72\u001b[0m \u001b[0mvalset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0mtestset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mload_data_from_pickle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mINPUT_FILES\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/Users/mariapanteli/Documents/QMUL/Code/MyPythonCode/plosone_underreview/scripts/map_and_average.pyc\u001b[0m in \u001b[0;36mload_data_from_pickle\u001b[0;34m(pickle_file)\u001b[0m\n\u001b[1;32m 56\u001b[0m '''load frame based features and labels from pickle file\n\u001b[1;32m 57\u001b[0m '''\n\u001b[0;32m---> 58\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpickle_file\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 59\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maudiolabels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpickle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[0;31m# remove 'unknown' and 'unidentified' country\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mIOError\u001b[0m: [Errno 2] No such file or directory: '/import/c4dm-04/mariap/train_data_melodia_8.pickle'" + ] + } + ], + "source": [ + "trainset, valset, testset = mapper.load_train_val_test_sets()\n", + "traindata, trainlabels, trainaudiolabels = trainset\n", + "valdata, vallabels, valaudiolabels = valset\n", + "testdata, testlabels, testaudiolabels = testset\n", + "labels = np.concatenate((trainlabels, vallabels, testlabels)).ravel()\n", + "audiolabels = np.concatenate((trainaudiolabels, valaudiolabels, testaudiolabels)).ravel()\n", + "print traindata.shape, valdata.shape, testdata.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## explain LDA" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "min_variance = 0.99\n", + "feat_labels, feat_inds = mapper.get_feat_inds(n_dim=traindata.shape[1])\n", + "for i in range(len(feat_inds)):\n", + " print \"mapping \" + feat_labels[i]\n", + " inds = feat_inds[i]\n", + " ssm_feat = util_feature_learning.Transformer()\n", + " if min_variance is not None:\n", + " ssm_feat.fit_data(traindata[:, inds], trainlabels, n_components=len(inds), pca_only=True)\n", + " n_components = np.where(ssm_feat.pca_transformer.explained_variance_ratio_.cumsum()>min_variance)[0][0]+1\n", + " print n_components, len(inds)\n", + " ssm_feat.fit_lda_data(traindata[:, inds], trainlabels, n_components=n_components)\n", + "\n", + " WW = ssm_feat.lda_transformer.scalings_\n", + " plt.figure()\n", + " plt.imshow(WW[:, :n_components].T, aspect='auto')\n", + " plt.colorbar()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## explain classifier" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "X_list, Y, Yaudio = pickle.load(open('../data/lda_data_melodia_8.pickle','rb'))\n", + "Xrhy, Xmel, Xmfc, Xchr = X_list\n", + "X = np.concatenate((Xrhy, Xmel, Xmfc, Xchr), axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "ssm_feat.classify_and_save(X_train, Y_train, X_test, Y_test, transform_label=\" \")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def components_plot(lda_transformer, XX, n_comp=42, figurename=None):\n", + " WW=lda_transformer.scalings_\n", + " Xlda=lda_transformer.transform(XX)\n", + " Xww=numpy.dot(XX, WW[:, :n_comp])\n", + " plt.figure()\n", + " plt.imshow(Xlda - Xww, aspect='auto')\n", + " plt.figure()\n", + " plt.imshow(Xlda, aspect='auto')\n", + " plt.figure()\n", + " plt.imshow(Xww, aspect='auto')\n", + " plt.figure()\n", + " plt.imshow(WW[:, :n_comp], aspect='auto') # this explains the weights up to n_components=64\n", + " if figurename is not None:\n", + " plt.savefig(figurename)\n", + "\n", + "XX = traindata[:, inds]\n", + "components_plot(ssm_feat.lda_transformer, XX, n_comp=n_components)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}