jamie@141
|
1 /*
|
jamie@141
|
2 * Copyright (C) 2012 Jamie Bullock
|
jamie@140
|
3 *
|
jamie@141
|
4 * Permission is hereby granted, free of charge, to any person obtaining a copy
|
jamie@141
|
5 * of this software and associated documentation files (the "Software"), to
|
jamie@141
|
6 * deal in the Software without restriction, including without limitation the
|
jamie@141
|
7 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
jamie@141
|
8 * sell copies of the Software, and to permit persons to whom the Software is
|
jamie@141
|
9 * furnished to do so, subject to the following conditions:
|
jamie@1
|
10 *
|
jamie@141
|
11 * The above copyright notice and this permission notice shall be included in
|
jamie@141
|
12 * all copies or substantial portions of the Software.
|
jamie@1
|
13 *
|
jamie@141
|
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
jamie@141
|
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
jamie@141
|
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
jamie@141
|
17 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
jamie@141
|
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
jamie@141
|
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
jamie@141
|
20 * IN THE SOFTWARE.
|
jamie@1
|
21 *
|
jamie@1
|
22 */
|
jamie@1
|
23
|
jamie@1
|
24 /* xtract_vector.c: defines functions that extract a feature as a single value from an input vector */
|
jamie@1
|
25
|
jamie@1
|
26 #include <math.h>
|
jamie@43
|
27 #include <string.h>
|
jamie@43
|
28 #include <stdlib.h>
|
jamie@30
|
29
|
jamie@140
|
30 #include "fftsg.h"
|
jamie@140
|
31
|
jamie@98
|
32 #include "xtract/libxtract.h"
|
jamie@98
|
33 #include "xtract_macros_private.h"
|
jamie@98
|
34
|
jamie@85
|
35 #ifndef roundf
|
jamie@140
|
36 float roundf(float f)
|
jamie@140
|
37 {
|
jamie@140
|
38 if (f - (int)f >= 0.5)
|
jamie@140
|
39 return (float)((int)f + 1);
|
jamie@140
|
40 else
|
jamie@140
|
41 return (float)((int)f);
|
jamie@140
|
42 }
|
jamie@85
|
43 #endif
|
jamie@85
|
44
|
jamie@113
|
45 #ifndef powf
|
jamie@120
|
46 #define powf pow
|
jamie@113
|
47 #endif
|
jamie@113
|
48
|
jamie@113
|
49 #ifndef expf
|
jamie@120
|
50 #define expf exp
|
jamie@113
|
51 #endif
|
jamie@113
|
52
|
jamie@113
|
53 #ifndef sqrtf
|
jamie@120
|
54 #define sqrtf sqrt
|
jamie@113
|
55 #endif
|
jamie@113
|
56
|
jamie@113
|
57 #ifndef fabsf
|
jamie@120
|
58 #define fabsf fabs
|
jamie@113
|
59 #endif
|
jamie@113
|
60
|
jamie@98
|
61 #include "xtract_globals_private.h"
|
jamie@98
|
62 #include "xtract_macros_private.h"
|
jamie@1
|
63
|
jamie@140
|
64 int xtract_spectrum(const float *data, const int N, const void *argv, float *result)
|
jamie@140
|
65 {
|
jamie@1
|
66
|
jamie@140
|
67 int vector = 0;
|
jamie@140
|
68 int withDC = 0;
|
jamie@140
|
69 int normalise = 0;
|
jamie@140
|
70 float q = 0.f;
|
jamie@140
|
71 float temp = 0.f;
|
jamie@140
|
72 float max = 0.f;
|
jamie@140
|
73 float NxN = XTRACT_SQ(N);
|
jamie@140
|
74 float *marker = NULL;
|
jamie@140
|
75 size_t bytes = N * sizeof(double);
|
jamie@140
|
76 double *rfft = NULL;
|
jamie@140
|
77 unsigned int n = 0;
|
jamie@140
|
78 unsigned int m = 0;
|
jamie@140
|
79 unsigned int nx2 = 0;
|
jamie@140
|
80 unsigned int M = N >> 1;
|
jamie@98
|
81
|
jamie@140
|
82 rfft = (double *)malloc(bytes);
|
jamie@140
|
83 //memcpy(rfft, data, bytes);
|
jamie@1
|
84
|
jamie@140
|
85 for(n = 0; n < N; ++n){
|
jamie@140
|
86 rfft[n] = (double)data[n];
|
jamie@140
|
87 }
|
jamie@1
|
88
|
jamie@56
|
89 q = *(float *)argv;
|
jamie@54
|
90 vector = (int)*((float *)argv+1);
|
jamie@70
|
91 withDC = (int)*((float *)argv+2);
|
jamie@105
|
92 normalise = (int)*((float *)argv+3);
|
jamie@105
|
93
|
jamie@56
|
94 XTRACT_CHECK_q;
|
jamie@46
|
95
|
jamie@140
|
96 if(!ooura_data_spectrum.initialised)
|
jamie@140
|
97 {
|
jamie@140
|
98 fprintf(stderr,
|
jamie@140
|
99 "libxtract: error: xtract_spectrum() failed, "
|
jamie@140
|
100 "fft data unitialised.\n");
|
jamie@98
|
101 return XTRACT_NO_RESULT;
|
jamie@98
|
102 }
|
jamie@98
|
103
|
jamie@140
|
104 /* ooura is in-place
|
jamie@140
|
105 * the output format seems to be
|
jamie@140
|
106 * a[0] - DC, a[1] - nyquist, a[2...N-1] - remaining bins
|
jamie@140
|
107 */
|
jamie@140
|
108 rdft(N, 1, rfft, ooura_data_spectrum.ooura_ip,
|
jamie@140
|
109 ooura_data_spectrum.ooura_w);
|
jamie@54
|
110
|
jamie@140
|
111 switch(vector)
|
jamie@140
|
112 {
|
jamie@67
|
113
|
jamie@120
|
114 case XTRACT_LOG_MAGNITUDE_SPECTRUM:
|
jamie@140
|
115 for(n = 0, m = 0; m < M; ++n, ++m)
|
jamie@140
|
116 {
|
jamie@140
|
117 if(!withDC && n == 0)
|
jamie@140
|
118 {
|
jamie@140
|
119 continue;
|
jamie@140
|
120 }
|
jamie@140
|
121 nx2 = n * 2;
|
jamie@140
|
122 temp = XTRACT_SQ(rfft[nx2]) + XTRACT_SQ(rfft[nx2+1]);
|
jamie@140
|
123 if (temp > XTRACT_LOG_LIMIT)
|
jamie@140
|
124 {
|
jamie@140
|
125 temp = logf(sqrtf(temp) / (float)N);
|
jamie@140
|
126 }
|
jamie@140
|
127 else
|
jamie@140
|
128 {
|
jamie@140
|
129 temp = XTRACT_LOG_LIMIT_DB;
|
jamie@140
|
130 }
|
jamie@140
|
131 result[m] =
|
jamie@140
|
132 /* Scaling */
|
jamie@140
|
133 (temp + XTRACT_DB_SCALE_OFFSET) /
|
jamie@140
|
134 XTRACT_DB_SCALE_OFFSET;
|
jamie@111
|
135
|
jamie@140
|
136 XTRACT_SET_FREQUENCY;
|
jamie@140
|
137 XTRACT_GET_MAX;
|
jamie@140
|
138 }
|
jamie@140
|
139 break;
|
jamie@67
|
140
|
jamie@140
|
141 case XTRACT_POWER_SPECTRUM:
|
jamie@140
|
142 for(n = 0, m = 0; m < M; ++n, ++m)
|
jamie@140
|
143 {
|
jamie@140
|
144 if(!withDC && n == 0)
|
jamie@140
|
145 {
|
jamie@140
|
146 ++n;
|
jamie@120
|
147 }
|
jamie@140
|
148 result[m] = (XTRACT_SQ(rfft[n]) + XTRACT_SQ(rfft[N - n])) / NxN;
|
jamie@140
|
149 XTRACT_SET_FREQUENCY;
|
jamie@140
|
150 XTRACT_GET_MAX;
|
jamie@140
|
151 }
|
jamie@140
|
152 break;
|
jamie@120
|
153
|
jamie@140
|
154 case XTRACT_LOG_POWER_SPECTRUM:
|
jamie@140
|
155 for(n = 0, m = 0; m < M; ++n, ++m)
|
jamie@140
|
156 {
|
jamie@140
|
157 if(!withDC && n == 0)
|
jamie@140
|
158 {
|
jamie@140
|
159 ++n;
|
jamie@120
|
160 }
|
jamie@140
|
161 if ((temp = XTRACT_SQ(rfft[n]) + XTRACT_SQ(rfft[N - n])) >
|
jamie@140
|
162 XTRACT_LOG_LIMIT)
|
jamie@140
|
163 temp = logf(temp / NxN);
|
jamie@140
|
164 else
|
jamie@140
|
165 temp = XTRACT_LOG_LIMIT_DB;
|
jamie@67
|
166
|
jamie@140
|
167 result[m] = (temp + XTRACT_DB_SCALE_OFFSET) /
|
jamie@140
|
168 XTRACT_DB_SCALE_OFFSET;
|
jamie@140
|
169 XTRACT_SET_FREQUENCY;
|
jamie@140
|
170 XTRACT_GET_MAX;
|
jamie@140
|
171 }
|
jamie@140
|
172 break;
|
jamie@111
|
173
|
jamie@140
|
174 default:
|
jamie@140
|
175 /* MAGNITUDE_SPECTRUM */
|
jamie@140
|
176 for(n = 0, m = 0; m < M; ++n, ++m)
|
jamie@140
|
177 {
|
jamie@140
|
178 marker = &result[m];
|
jamie@140
|
179
|
jamie@140
|
180 if(n==0 && !withDC) /* discard DC and keep Nyquist */
|
jamie@140
|
181 {
|
jamie@140
|
182 ++n;
|
jamie@140
|
183 marker = &result[M-1];
|
jamie@120
|
184 }
|
jamie@140
|
185 if(n==1 && withDC) /* discard Nyquist */
|
jamie@140
|
186 {
|
jamie@140
|
187 ++n;
|
jamie@140
|
188 }
|
jamie@120
|
189
|
jamie@140
|
190 *marker = (float)(sqrt(XTRACT_SQ(rfft[n*2]) +
|
jamie@140
|
191 XTRACT_SQ(rfft[n*2+1])) / (double)N);
|
jamie@111
|
192
|
jamie@140
|
193 XTRACT_SET_FREQUENCY;
|
jamie@140
|
194 XTRACT_GET_MAX;
|
jamie@140
|
195
|
jamie@140
|
196 }
|
jamie@140
|
197 break;
|
jamie@70
|
198 }
|
jamie@105
|
199
|
jamie@140
|
200 if(normalise)
|
jamie@140
|
201 {
|
jamie@105
|
202 for(n = 0; n < M; n++)
|
jamie@105
|
203 result[n] /= max;
|
jamie@105
|
204 }
|
jamie@105
|
205
|
jamie@140
|
206 free(rfft);
|
jamie@120
|
207
|
jamie@56
|
208 return XTRACT_SUCCESS;
|
jamie@1
|
209 }
|
jamie@1
|
210
|
jamie@140
|
211 int xtract_autocorrelation_fft(const float *data, const int N, const void *argv, float *result)
|
jamie@140
|
212 {
|
jamie@120
|
213
|
jamie@140
|
214 double *rfft = NULL;
|
jamie@140
|
215 int n = 0;
|
jamie@140
|
216 int M = 0;
|
jamie@1
|
217
|
jamie@75
|
218 M = N << 1;
|
jamie@43
|
219
|
jamie@75
|
220 /* Zero pad the input vector */
|
jamie@140
|
221 rfft = (double *)calloc(M, sizeof(double));
|
jamie@140
|
222 memcpy(rfft, data, N * sizeof(float));
|
jamie@75
|
223
|
jamie@140
|
224 rdft(M, 1, rfft, ooura_data_autocorrelation_fft.ooura_ip,
|
jamie@140
|
225 ooura_data_autocorrelation_fft.ooura_w);
|
jamie@1
|
226
|
jamie@140
|
227 for(n = 2; n < M; n++)
|
jamie@140
|
228 {
|
jamie@140
|
229 rfft[n*2] = XTRACT_SQ(rfft[n*2]) + XTRACT_SQ(rfft[n*2+1]);
|
jamie@140
|
230 rfft[n*2+1] = 0.f;
|
jamie@75
|
231 }
|
jamie@120
|
232
|
jamie@140
|
233 rfft[0] = XTRACT_SQ(rfft[0]);
|
jamie@140
|
234 rfft[1] = XTRACT_SQ(rfft[1]);
|
jamie@75
|
235
|
jamie@140
|
236 rdft(M, -1, rfft, ooura_data_autocorrelation_fft.ooura_ip,
|
jamie@140
|
237 ooura_data_autocorrelation_fft.ooura_w);
|
jamie@120
|
238
|
jamie@75
|
239 /* Normalisation factor */
|
jamie@75
|
240 M = M * N;
|
jamie@75
|
241
|
jamie@75
|
242 for(n = 0; n < N; n++)
|
jamie@140
|
243 result[n] = rfft[n] / (float)M;
|
jamie@75
|
244
|
jamie@140
|
245 free(rfft);
|
jamie@38
|
246
|
jamie@56
|
247 return XTRACT_SUCCESS;
|
jamie@1
|
248 }
|
jamie@1
|
249
|
jamie@140
|
250 int xtract_mfcc(const float *data, const int N, const void *argv, float *result)
|
jamie@140
|
251 {
|
jamie@30
|
252
|
jamie@30
|
253 xtract_mel_filter *f;
|
jamie@30
|
254 int n, filter;
|
jamie@30
|
255
|
jamie@30
|
256 f = (xtract_mel_filter *)argv;
|
jamie@120
|
257
|
jamie@140
|
258 for(filter = 0; filter < f->n_filters; filter++)
|
jamie@140
|
259 {
|
danstowell@68
|
260 result[filter] = 0.f;
|
jamie@140
|
261 for(n = 0; n < N; n++)
|
jamie@140
|
262 {
|
jamie@71
|
263 result[filter] += data[n] * f->filters[filter][n];
|
jamie@30
|
264 }
|
jamie@113
|
265 result[filter] = logf(result[filter] < XTRACT_LOG_LIMIT ? XTRACT_LOG_LIMIT : result[filter]);
|
jamie@30
|
266 }
|
jamie@30
|
267
|
jamie@30
|
268 xtract_dct(result, f->n_filters, NULL, result);
|
jamie@120
|
269
|
jamie@56
|
270 return XTRACT_SUCCESS;
|
jamie@30
|
271 }
|
jamie@30
|
272
|
jamie@140
|
273 int xtract_dct(const float *data, const int N, const void *argv, float *result)
|
jamie@140
|
274 {
|
jamie@120
|
275
|
jamie@140
|
276 int n;
|
jamie@140
|
277 int m;
|
jamie@140
|
278 float *temp = calloc(N, sizeof(float));
|
jamie@120
|
279
|
jamie@140
|
280 for (n = 0; n < N; ++n)
|
jamie@140
|
281 {
|
jamie@140
|
282 for(m = 1; m <= N; ++m) {
|
jamie@140
|
283 temp[n] += data[m - 1] * cos(M_PI * (n / (float)N) * (m - 0.5));
|
jamie@140
|
284 }
|
jamie@140
|
285 }
|
jamie@120
|
286
|
jamie@140
|
287 return XTRACT_SUCCESS;
|
jamie@30
|
288 }
|
jamie@30
|
289
|
jamie@140
|
290 int xtract_autocorrelation(const float *data, const int N, const void *argv, float *result)
|
jamie@140
|
291 {
|
jamie@30
|
292
|
jamie@30
|
293 /* Naive time domain implementation */
|
jamie@120
|
294
|
jamie@30
|
295 int n = N, i;
|
jamie@120
|
296
|
jamie@30
|
297 float corr;
|
jamie@30
|
298
|
jamie@140
|
299 while(n--)
|
jamie@140
|
300 {
|
jamie@120
|
301 corr = 0;
|
jamie@140
|
302 for(i = 0; i < N - n; i++)
|
jamie@140
|
303 {
|
jamie@30
|
304 corr += data[i] * data[i + n];
|
jamie@30
|
305 }
|
jamie@30
|
306 result[n] = corr / N;
|
jamie@30
|
307 }
|
jamie@38
|
308
|
jamie@56
|
309 return XTRACT_SUCCESS;
|
jamie@30
|
310 }
|
jamie@30
|
311
|
jamie@140
|
312 int xtract_amdf(const float *data, const int N, const void *argv, float *result)
|
jamie@140
|
313 {
|
jamie@1
|
314
|
jamie@1
|
315 int n = N, i;
|
jamie@120
|
316
|
jamie@6
|
317 float md, temp;
|
jamie@1
|
318
|
jamie@140
|
319 while(n--)
|
jamie@140
|
320 {
|
jamie@120
|
321 md = 0.f;
|
jamie@140
|
322 for(i = 0; i < N - n; i++)
|
jamie@140
|
323 {
|
jamie@6
|
324 temp = data[i] - data[i + n];
|
jamie@120
|
325 temp = (temp < 0 ? -temp : temp);
|
jamie@120
|
326 md += temp;
|
jamie@1
|
327 }
|
jamie@113
|
328 result[n] = md / (float)N;
|
jamie@1
|
329 }
|
jamie@38
|
330
|
jamie@56
|
331 return XTRACT_SUCCESS;
|
jamie@1
|
332 }
|
jamie@1
|
333
|
jamie@140
|
334 int xtract_asdf(const float *data, const int N, const void *argv, float *result)
|
jamie@140
|
335 {
|
jamie@120
|
336
|
jamie@1
|
337 int n = N, i;
|
jamie@120
|
338
|
jamie@1
|
339 float sd;
|
jamie@1
|
340
|
jamie@140
|
341 while(n--)
|
jamie@140
|
342 {
|
jamie@120
|
343 sd = 0.f;
|
jamie@140
|
344 for(i = 0; i < N - n; i++)
|
jamie@140
|
345 {
|
jamie@6
|
346 /*sd = 1;*/
|
jamie@56
|
347 sd += XTRACT_SQ(data[i] - data[i + n]);
|
jamie@1
|
348 }
|
jamie@113
|
349 result[n] = sd / (float)N;
|
jamie@1
|
350 }
|
jamie@38
|
351
|
jamie@56
|
352 return XTRACT_SUCCESS;
|
jamie@1
|
353 }
|
jamie@1
|
354
|
jamie@140
|
355 int xtract_bark_coefficients(const float *data, const int N, const void *argv, float *result)
|
jamie@140
|
356 {
|
jamie@1
|
357
|
jamie@1
|
358 int *limits, band, n;
|
jamie@1
|
359
|
jamie@1
|
360 limits = (int *)argv;
|
jamie@120
|
361
|
jamie@140
|
362 for(band = 0; band < XTRACT_BARK_BANDS - 1; band++)
|
jamie@140
|
363 {
|
jamie@110
|
364 result[band] = 0.f;
|
jamie@1
|
365 for(n = limits[band]; n < limits[band + 1]; n++)
|
jamie@1
|
366 result[band] += data[n];
|
jamie@1
|
367 }
|
jamie@38
|
368
|
jamie@56
|
369 return XTRACT_SUCCESS;
|
jamie@1
|
370 }
|
jamie@1
|
371
|
jamie@140
|
372 int xtract_peak_spectrum(const float *data, const int N, const void *argv, float *result)
|
jamie@140
|
373 {
|
jamie@1
|
374
|
jamie@56
|
375 float threshold, max, y, y2, y3, p, q, *input = NULL;
|
jamie@43
|
376 size_t bytes;
|
jamie@59
|
377 int n = N, rv = XTRACT_SUCCESS;
|
jamie@49
|
378
|
jamie@56
|
379 threshold = max = y = y2 = y3 = p = q = 0.f;
|
jamie@120
|
380
|
jamie@140
|
381 if(argv != NULL)
|
jamie@140
|
382 {
|
jamie@56
|
383 q = ((float *)argv)[0];
|
jamie@55
|
384 threshold = ((float *)argv)[1];
|
jamie@1
|
385 }
|
jamie@49
|
386 else
|
jamie@56
|
387 rv = XTRACT_BAD_ARGV;
|
jamie@49
|
388
|
jamie@140
|
389 if(threshold < 0 || threshold > 100)
|
jamie@140
|
390 {
|
jamie@55
|
391 threshold = 0;
|
jamie@56
|
392 rv = XTRACT_BAD_ARGV;
|
jamie@1
|
393 }
|
jamie@1
|
394
|
jamie@56
|
395 XTRACT_CHECK_q;
|
jamie@49
|
396
|
jamie@98
|
397 input = (float *)calloc(N, sizeof(float));
|
jamie@98
|
398
|
jamie@98
|
399 bytes = N * sizeof(float);
|
jamie@43
|
400
|
jamie@43
|
401 if(input != NULL)
|
jamie@120
|
402 input = memcpy(input, data, bytes);
|
jamie@43
|
403 else
|
jamie@120
|
404 return XTRACT_MALLOC_FAILED;
|
jamie@43
|
405
|
jamie@45
|
406 while(n--)
|
jamie@56
|
407 max = XTRACT_MAX(max, input[n]);
|
jamie@120
|
408
|
jamie@55
|
409 threshold *= .01 * max;
|
jamie@1
|
410
|
jamie@1
|
411 result[0] = 0;
|
jamie@59
|
412 result[N] = 0;
|
jamie@1
|
413
|
jamie@140
|
414 for(n = 1; n < N; n++)
|
jamie@140
|
415 {
|
jamie@140
|
416 if(input[n] >= threshold)
|
jamie@140
|
417 {
|
jamie@140
|
418 if(input[n] > input[n - 1] && n + 1 < N && input[n] > input[n + 1])
|
jamie@140
|
419 {
|
jamie@140
|
420 result[N + n] = q * (n + (p = .5 * ((y = input[n-1]) -
|
jamie@140
|
421 (y3 = input[n+1])) / (input[n - 1] - 2 *
|
jamie@140
|
422 (y2 = input[n]) + input[n + 1])));
|
jamie@52
|
423 result[n] = y2 - .25 * (y - y3) * p;
|
jamie@1
|
424 }
|
jamie@140
|
425 else
|
jamie@140
|
426 {
|
jamie@1
|
427 result[n] = 0;
|
jamie@59
|
428 result[N + n] = 0;
|
jamie@1
|
429 }
|
jamie@1
|
430 }
|
jamie@140
|
431 else
|
jamie@140
|
432 {
|
jamie@1
|
433 result[n] = 0;
|
jamie@59
|
434 result[N + n] = 0;
|
jamie@1
|
435 }
|
jamie@140
|
436 }
|
jamie@120
|
437
|
jamie@43
|
438 free(input);
|
jamie@56
|
439 return (rv ? rv : XTRACT_SUCCESS);
|
jamie@1
|
440 }
|
jamie@120
|
441
|
jamie@140
|
442 int xtract_harmonic_spectrum(const float *data, const int N, const void *argv, float *result)
|
jamie@140
|
443 {
|
jamie@120
|
444
|
jamie@140
|
445 int n = (N >> 1), M = n;
|
jamie@38
|
446
|
jamie@43
|
447 const float *freqs, *amps;
|
jamie@55
|
448 float f0, threshold, ratio, nearest, distance;
|
jamie@38
|
449
|
jamie@52
|
450 amps = data;
|
jamie@52
|
451 freqs = data + n;
|
jamie@38
|
452 f0 = *((float *)argv);
|
jamie@55
|
453 threshold = *((float *)argv+1);
|
jamie@38
|
454
|
jamie@38
|
455 ratio = nearest = distance = 0.f;
|
jamie@38
|
456
|
jamie@140
|
457 while(n--)
|
jamie@140
|
458 {
|
jamie@140
|
459 if(freqs[n])
|
jamie@140
|
460 {
|
jamie@120
|
461 ratio = freqs[n] / f0;
|
jamie@120
|
462 nearest = roundf(ratio);
|
jamie@120
|
463 distance = fabs(nearest - ratio);
|
jamie@120
|
464 if(distance > threshold)
|
jamie@120
|
465 result[n] = result[M + n] = 0.f;
|
jamie@140
|
466 else
|
jamie@140
|
467 {
|
jamie@120
|
468 result[n] = amps[n];
|
jamie@120
|
469 result[M + n] = freqs[n];
|
jamie@120
|
470 }
|
jamie@120
|
471 }
|
jamie@120
|
472 else
|
jamie@120
|
473 result[n] = result[M + n] = 0.f;
|
jamie@38
|
474 }
|
jamie@56
|
475 return XTRACT_SUCCESS;
|
jamie@38
|
476 }
|
jamie@120
|
477
|
jamie@140
|
478 int xtract_lpc(const float *data, const int N, const void *argv, float *result)
|
jamie@140
|
479 {
|
jamie@104
|
480
|
jamie@104
|
481 int i, j, k, M, L;
|
jamie@140
|
482 float r = 0.f,
|
jamie@104
|
483 error = 0.f;
|
jamie@104
|
484
|
jamie@104
|
485 float *ref = NULL,
|
jamie@140
|
486 *lpc = NULL ;
|
jamie@104
|
487
|
jamie@104
|
488 error = data[0];
|
jamie@104
|
489 k = N; /* The length of *data */
|
jamie@104
|
490 L = N - 1; /* The number of LPC coefficients */
|
jamie@104
|
491 M = L * 2; /* The length of *result */
|
jamie@104
|
492 ref = result;
|
jamie@104
|
493 lpc = result+L;
|
jamie@113
|
494
|
jamie@140
|
495 if(error == 0.0)
|
jamie@140
|
496 {
|
jamie@113
|
497 memset(result, 0, M * sizeof(float));
|
jamie@104
|
498 return XTRACT_NO_RESULT;
|
jamie@104
|
499 }
|
jamie@113
|
500
|
jamie@104
|
501 memset(result, 0, M * sizeof(float));
|
jamie@104
|
502
|
jamie@140
|
503 for (i = 0; i < L; i++)
|
jamie@140
|
504 {
|
jamie@104
|
505
|
jamie@104
|
506 /* Sum up this iteration's reflection coefficient. */
|
jamie@104
|
507 r = -data[i + 1];
|
jamie@140
|
508 for (j = 0; j < i; j++)
|
jamie@104
|
509 r -= lpc[j] * data[i - j];
|
jamie@104
|
510 ref[i] = r /= error;
|
jamie@104
|
511
|
jamie@104
|
512 /* Update LPC coefficients and total error. */
|
jamie@104
|
513 lpc[i] = r;
|
jamie@140
|
514 for (j = 0; j < i / 2; j++)
|
jamie@140
|
515 {
|
jamie@104
|
516 float tmp = lpc[j];
|
jamie@104
|
517 lpc[j] = r * lpc[i - 1 - j];
|
jamie@104
|
518 lpc[i - 1 - j] += r * tmp;
|
jamie@104
|
519 }
|
jamie@104
|
520 if (i % 2) lpc[j] += lpc[j] * r;
|
jamie@104
|
521
|
jamie@104
|
522 error *= 1 - r * r;
|
jamie@104
|
523 }
|
jamie@104
|
524
|
jamie@104
|
525 return XTRACT_SUCCESS;
|
jamie@104
|
526 }
|
jamie@104
|
527
|
jamie@140
|
528 int xtract_lpcc(const float *data, const int N, const void *argv, float *result)
|
jamie@140
|
529 {
|
jamie@104
|
530
|
jamie@104
|
531 /* Given N lpc coefficients extract an LPC cepstrum of size argv[0] */
|
jamie@104
|
532 /* Based on an an algorithm by rabiner and Juang */
|
jamie@104
|
533
|
jamie@104
|
534 int n, k;
|
jamie@104
|
535 float sum;
|
jamie@104
|
536 int order = N - 1; /* Eventually change this to Q = 3/2 p as suggested in Rabiner */
|
jamie@140
|
537 int cep_length;
|
jamie@120
|
538
|
jamie@104
|
539 if(argv == NULL)
|
jamie@115
|
540 cep_length = N - 1; /* FIX: if we're going to have default values, they should come from the descriptor */
|
jamie@104
|
541 else
|
jamie@115
|
542 cep_length = *(int *)argv;
|
jamie@120
|
543 //cep_length = (int)((float *)argv)[0];
|
jamie@104
|
544
|
jamie@104
|
545 memset(result, 0, cep_length * sizeof(float));
|
jamie@104
|
546
|
jamie@140
|
547 for (n = 1; n <= order && n <= cep_length; n++)
|
jamie@140
|
548 {
|
jamie@104
|
549 sum = 0.f;
|
jamie@104
|
550 for (k = 1; k < n; k++)
|
jamie@104
|
551 sum += k * result[k-1] * data[n - k];
|
jamie@104
|
552 result[n-1] = data[n] + sum / n;
|
jamie@104
|
553 }
|
jamie@104
|
554
|
jamie@104
|
555 /* be wary of these interpolated values */
|
jamie@140
|
556 for(n = order + 1; n <= cep_length; n++)
|
jamie@140
|
557 {
|
jamie@104
|
558 sum = 0.f;
|
jamie@104
|
559 for (k = n - (order - 1); k < n; k++)
|
jamie@104
|
560 sum += k * result[k-1] * data[n - k];
|
jamie@104
|
561 result[n-1] = sum / n;
|
jamie@104
|
562 }
|
jamie@104
|
563
|
jamie@104
|
564 return XTRACT_SUCCESS;
|
jamie@104
|
565
|
jamie@104
|
566 }
|
jamie@104
|
567 //int xtract_lpcc_s(const float *data, const int N, const void *argv, float *result){
|
jamie@104
|
568 // return XTRACT_SUCCESS;
|
jamie@104
|
569 //}
|
jamie@104
|
570
|
jamie@140
|
571 int xtract_subbands(const float *data, const int N, const void *argv, float *result)
|
jamie@140
|
572 {
|
jamie@104
|
573
|
jamie@114
|
574 int n, bw, xtract_func, nbands, scale, start, lower, *argi, rv;
|
jamie@114
|
575
|
jamie@114
|
576 argi = (int *)argv;
|
jamie@114
|
577
|
jamie@114
|
578 xtract_func = argi[0];
|
jamie@114
|
579 nbands = argi[1];
|
jamie@114
|
580 scale = argi[2];
|
jamie@114
|
581 start = argi[3];
|
jamie@114
|
582
|
jamie@114
|
583 if(scale == XTRACT_LINEAR_SUBBANDS)
|
jamie@114
|
584 bw = floorf((N - start) / nbands);
|
jamie@114
|
585 else
|
jamie@114
|
586 bw = start;
|
jamie@114
|
587
|
jamie@114
|
588 lower = start;
|
jamie@115
|
589 rv = XTRACT_SUCCESS;
|
jamie@114
|
590
|
jamie@140
|
591 for(n = 0; n < nbands; n++)
|
jamie@140
|
592 {
|
jamie@114
|
593
|
jamie@114
|
594 /* Bounds sanity check */
|
jamie@140
|
595 if(lower >= N || lower + bw >= N)
|
jamie@140
|
596 {
|
jamie@120
|
597 // printf("n: %d\n", n);
|
jamie@115
|
598 result[n] = 0.f;
|
jamie@114
|
599 continue;
|
jamie@115
|
600 }
|
jamie@114
|
601
|
jamie@114
|
602 rv = xtract[xtract_func](data+lower, bw, NULL, &result[n]);
|
jamie@114
|
603
|
jamie@114
|
604 if(rv != XTRACT_SUCCESS)
|
jamie@114
|
605 return rv;
|
jamie@114
|
606
|
jamie@140
|
607 switch(scale)
|
jamie@140
|
608 {
|
jamie@140
|
609 case XTRACT_OCTAVE_SUBBANDS:
|
jamie@140
|
610 lower += bw;
|
jamie@140
|
611 bw = lower;
|
jamie@140
|
612 break;
|
jamie@140
|
613 case XTRACT_LINEAR_SUBBANDS:
|
jamie@140
|
614 lower += bw;
|
jamie@140
|
615 break;
|
jamie@114
|
616 }
|
jamie@114
|
617
|
jamie@114
|
618 }
|
jamie@114
|
619
|
jamie@114
|
620 return rv;
|
jamie@114
|
621
|
jamie@114
|
622 }
|
jamie@114
|
623
|
jamie@114
|
624
|
jamie@114
|
625
|