c@1
|
1
|
c@1
|
2 module cqtkernel;
|
c@1
|
3
|
c@3
|
4 vec = load may.vector;
|
c@3
|
5 bf = load may.vector.blockfuncs;
|
c@3
|
6 complex = load may.complex;
|
c@3
|
7 window = load may.signal.window;
|
c@3
|
8 fft = load may.transform.fft;
|
c@6
|
9 cm = load may.matrix.complex;
|
c@3
|
10
|
c@2
|
11 { pow, round, floor, ceil, nextPowerOfTwo } = load may.mathmisc;
|
c@1
|
12
|
c@9
|
13 makeKernel { sampleRate, maxFreq, binsPerOctave } =
|
c@9
|
14 (q = 1;
|
c@9
|
15 atomHopFactor = 0.25;
|
c@9
|
16 thresh = 0.0005;
|
c@9
|
17 minFreq = (maxFreq/2) * (pow 2 (1/binsPerOctave));
|
c@9
|
18 bigQ = q / ((pow 2 (1/binsPerOctave)) - 1);
|
c@1
|
19
|
c@9
|
20 maxNK = round(bigQ * sampleRate / minFreq);
|
c@9
|
21 minNK = round(bigQ * sampleRate /
|
c@9
|
22 (minFreq * (pow 2 ((binsPerOctave-1) / binsPerOctave))));
|
c@1
|
23
|
c@9
|
24 atomHop = round(minNK * atomHopFactor);
|
c@9
|
25
|
c@9
|
26 firstCentre = atomHop * (ceil ((ceil (maxNK/2)) / atomHop));
|
c@9
|
27
|
c@9
|
28 fftSize = nextPowerOfTwo (firstCentre + ceil (maxNK/2));
|
c@9
|
29
|
c@16
|
30 eprintln "sampleRate = \(sampleRate), maxFreq = \(maxFreq), binsPerOctave = \(binsPerOctave), q = \(q), atomHopFactor = \(atomHopFactor), thresh = \(thresh)";
|
c@16
|
31 eprintln "minFreq = \(minFreq), bigQ = \(bigQ), maxNK = \(maxNK), minNK = \(minNK), atomHop = \(atomHop), firstCentre = \(firstCentre), fftSize = \(fftSize)";
|
c@9
|
32
|
c@9
|
33 winNr = floor((fftSize - ceil(maxNK/2) - firstCentre) / atomHop) + 1;
|
c@9
|
34
|
c@9
|
35 lastCentre = firstCentre + (winNr - 1) * atomHop;
|
c@9
|
36
|
c@9
|
37 fftHop = (lastCentre + atomHop) - firstCentre;
|
c@9
|
38
|
c@16
|
39 eprintln "winNr = \(winNr), lastCentre = \(lastCentre), fftHop = \(fftHop)";
|
c@9
|
40
|
c@9
|
41 fftFunc = fft.forward fftSize;
|
c@9
|
42
|
c@9
|
43 // Note the MATLAB uses exp(2*pi*1i*x) for a complex generating
|
c@9
|
44 // function. We can't do that here; we need to generate real and imag
|
c@9
|
45 // parts separately as real = cos(2*pi*x), imag = sin(2*pi*x).
|
c@9
|
46
|
c@9
|
47 kernels = map do k:
|
c@9
|
48
|
c@9
|
49 nk = round(bigQ * sampleRate / (minFreq * (pow 2 ((k-1)/binsPerOctave))));
|
c@9
|
50
|
c@9
|
51 // the cq MATLAB toolbox uses a symmetric window for
|
c@9
|
52 // blackmanharris -- which is odd because it uses a periodic one
|
c@9
|
53 // for other types. Oh well
|
c@9
|
54 win = bf.divideBy nk
|
c@9
|
55 (bf.sqrt
|
c@9
|
56 (window.windowFunction (BlackmanHarris ()) [Symmetric true] nk));
|
c@9
|
57
|
c@9
|
58 fk = minFreq * (pow 2 ((k-1)/binsPerOctave));
|
c@9
|
59
|
c@9
|
60 genKernel f = bf.multiply win
|
c@9
|
61 (vec.fromList
|
c@9
|
62 (map do i: f (2 * pi * fk * i / sampleRate) done [0..nk-1]));
|
c@9
|
63
|
c@9
|
64 reals = genKernel cos;
|
c@9
|
65 imags = genKernel sin;
|
c@9
|
66
|
c@9
|
67 atomOffset = firstCentre - ceil(nk/2);
|
c@9
|
68
|
c@9
|
69 map do i:
|
c@9
|
70
|
c@9
|
71 shift = vec.zeros (atomOffset + ((i-1) * atomHop));
|
c@9
|
72
|
c@9
|
73 specKernel = fftFunc
|
c@9
|
74 (complex.complexArray
|
c@9
|
75 (vec.concat [shift, reals])
|
c@9
|
76 (vec.concat [shift, imags]));
|
c@9
|
77
|
c@9
|
78 map do c:
|
c@9
|
79 if complex.magnitude c <= thresh then complex.zero else c fi
|
c@9
|
80 done specKernel;
|
c@9
|
81
|
c@9
|
82 done [1..winNr];
|
c@9
|
83
|
c@9
|
84 done [1..binsPerOctave];
|
c@9
|
85
|
c@9
|
86 kmat = cm.toSparse
|
c@9
|
87 (cm.scaled (1/fftSize)
|
c@9
|
88 (cm.newComplexMatrix (RowMajor()) (concat kernels)));
|
c@9
|
89
|
c@16
|
90 eprintln "density = \(cm.density kmat)";
|
c@9
|
91
|
c@9
|
92 // Normalisation
|
c@9
|
93
|
c@9
|
94 wx1 = bf.maxindex (complex.magnitudes (cm.getRow 0 kmat));
|
c@9
|
95 wx2 = bf.maxindex (complex.magnitudes (cm.getRow (cm.height kmat - 1) kmat));
|
c@9
|
96
|
c@9
|
97 subset = cm.columnSlice kmat wx1 (wx2+1);
|
c@9
|
98 square = cm.product (cm.conjugateTransposed subset) subset;
|
c@9
|
99 diag = complex.magnitudes (cm.getDiagonal 0 square);
|
c@9
|
100 wK = vec.slice diag (round(1/q)) (vec.length diag - round(1/q) - 2);
|
c@9
|
101
|
c@9
|
102 weight = (fftHop / fftSize) / (bf.mean (bf.abs wK));
|
c@9
|
103 weight = sqrt(weight);
|
c@1
|
104
|
c@9
|
105 {
|
c@9
|
106 kernel = cm.scaled weight kmat,
|
c@9
|
107 fftSize,
|
c@9
|
108 fftHop,
|
c@9
|
109 binsPerOctave,
|
c@12
|
110 atomsPerFrame = winNr,
|
c@12
|
111 atomSpacing = atomHop,
|
c@13
|
112 firstCentre,
|
c@9
|
113 maxFreq,
|
c@9
|
114 minFreq,
|
c@9
|
115 bigQ
|
c@9
|
116 });
|
c@1
|
117
|
c@9
|
118 {
|
c@9
|
119 makeKernel
|
c@9
|
120 }
|
c@1
|
121
|