c@10
|
1
|
c@37
|
2 module cqt;
|
c@10
|
3
|
c@10
|
4 cqtkernel = load cqtkernel;
|
c@10
|
5 resample = load may.stream.resample;
|
c@10
|
6 manipulate = load may.stream.manipulate;
|
c@10
|
7 cm = load may.matrix.complex;
|
c@10
|
8 framer = load may.stream.framer;
|
c@10
|
9 cplx = load may.complex;
|
c@10
|
10 fft = load may.transform.fft;
|
c@10
|
11 vec = load may.vector;
|
c@10
|
12
|
c@10
|
13 { pow, round, floor, ceil, log2, nextPowerOfTwo } = load may.mathmisc;
|
c@10
|
14
|
c@37
|
15 cqt { maxFreq, minFreq, binsPerOctave } str =
|
c@10
|
16 (sampleRate = str.sampleRate;
|
c@10
|
17 octaves = ceil (log2 (maxFreq / minFreq));
|
c@10
|
18 actualMinFreq = (maxFreq / (pow 2 octaves)) * (pow 2 (1/binsPerOctave));
|
c@10
|
19
|
c@41
|
20 kdata = cqtkernel.makeKernel { sampleRate, maxFreq, binsPerOctave };
|
c@10
|
21
|
c@41
|
22 eprintln "sampleRate = \(sampleRate), maxFreq = \(maxFreq), minFreq = \(minFreq), actualMinFreq = \(actualMinFreq), octaves = \(octaves), binsPerOctave = \(binsPerOctave), fftSize = \(kdata.fftSize), hop = \(kdata.fftHop)";
|
c@10
|
23
|
c@16
|
24 eprintln "atomsPerFrame = \(kdata.atomsPerFrame)";
|
c@11
|
25
|
c@41
|
26 padding = (kdata.fftSize * (pow 2 (octaves-1)));
|
c@40
|
27
|
c@40
|
28 eprintln "padding = \(padding)";
|
c@40
|
29
|
c@40
|
30 str = manipulate.paddedBy padding str;
|
c@40
|
31
|
c@10
|
32 streams = manipulate.duplicated octaves str;
|
c@10
|
33
|
c@10
|
34 //!!! can't be right!
|
c@10
|
35 kernel = cm.transposed (cm.conjugateTransposed kdata.kernel);
|
c@10
|
36
|
c@16
|
37 eprintln "have kernel";
|
c@10
|
38
|
c@10
|
39 fftFunc = fft.forward kdata.fftSize;
|
c@10
|
40
|
c@10
|
41 cqblocks =
|
c@10
|
42 map do octave:
|
c@10
|
43 frames = framer.monoFrames //!!! mono for now
|
c@10
|
44 { framesize = kdata.fftSize, hop = kdata.fftHop }
|
c@10
|
45 (resample.decimated (pow 2 octave) streams[octave]);
|
c@10
|
46 map do frame:
|
c@10
|
47 freq = fftFunc (cplx.complexArray frame (vec.zeros kdata.fftSize));
|
c@41
|
48 println "octave = \(octave), frame = \(vec.list frame)";
|
c@41
|
49 println "octave = \(octave), freq = \(freq)";
|
c@10
|
50 cm.product kernel (cm.newComplexColumnVector freq);
|
c@10
|
51 done frames;
|
c@10
|
52 done [0..octaves-1];
|
c@10
|
53
|
c@13
|
54 // The cqblocks list is a list<list<matrix>>. Each top-level list
|
c@11
|
55 // corresponds to an octave, from highest to lowest, each having
|
c@11
|
56 // twice as many elements in its list as the next octave. The
|
c@11
|
57 // sub-lists are sampled in time with an effective spacing of
|
c@11
|
58 // fftSize * 2^(octave-1) audio frames, and the matrices are row
|
c@11
|
59 // vectors with atomsPerFrame * binsPerOctave complex elements.
|
c@13
|
60 //
|
c@13
|
61 // ***
|
c@13
|
62 //
|
c@13
|
63 // In a typical constant-Q structure, each (2^(octaves-1) *
|
c@13
|
64 // fftHop) input frames gives us an output structure conceptually
|
c@13
|
65 // like this:
|
c@10
|
66 //
|
c@10
|
67 // [][][][][][][][] <- fftHop frames per highest-octave output value
|
c@10
|
68 // [][][][][][][][] layered as many times as binsPerOctave (here 2)
|
c@10
|
69 // [--][--][--][--] <- fftHop*2 frames for the next lower octave
|
c@10
|
70 // [--][--][--][--] etc
|
c@10
|
71 // [------][------]
|
c@10
|
72 // [------][------]
|
c@10
|
73 // [--------------]
|
c@10
|
74 // [--------------]
|
c@10
|
75 //
|
c@13
|
76 // ***
|
c@13
|
77 //
|
c@13
|
78 // But the kernel we're using here has more than one temporally
|
c@13
|
79 // spaced atom; each individual cell is a row vector with
|
c@13
|
80 // atomsPerFrame * binsPerOctave elements, but that actually
|
c@13
|
81 // represents a rectangular matrix of result cells with width
|
c@13
|
82 // atomsPerFrame and height binsPerOctave. The columns of this
|
c@13
|
83 // matrix (the atoms) then need to be spaced by 2^(octave-1)
|
c@13
|
84 // relative to those from the highest octave.
|
c@10
|
85
|
c@15
|
86 // Reshape each row vector into the appropriate rectangular matrix
|
c@21
|
87 // and split into single-atom columns
|
c@19
|
88
|
c@21
|
89 emptyHops = kdata.firstCentre / kdata.atomSpacing;
|
c@21
|
90 maxDrop = emptyHops * (pow 2 (octaves-1)) - emptyHops;
|
c@21
|
91 eprintln "maxDrop = \(maxDrop)";
|
c@21
|
92
|
c@21
|
93 cqblocks = map do octlist:
|
c@21
|
94 concat
|
c@21
|
95 (map do rv:
|
c@21
|
96 cm.asColumns
|
c@21
|
97 (cm.generate do row col:
|
c@21
|
98 cm.at rv ((row * kdata.atomsPerFrame) + col) 0
|
c@21
|
99 done {
|
c@21
|
100 rows = kdata.binsPerOctave,
|
c@21
|
101 columns = kdata.atomsPerFrame
|
c@21
|
102 })
|
c@21
|
103 done octlist)
|
c@21
|
104 done cqblocks;
|
c@21
|
105
|
c@21
|
106 cqblocks = array (map2 do octlist octave:
|
c@21
|
107 d = emptyHops * (pow 2 (octaves-octave)) - emptyHops;
|
c@22
|
108
|
c@41
|
109 // d = 0; //!!!
|
c@22
|
110
|
c@21
|
111 eprintln "dropping \(d)";
|
c@21
|
112 drop d octlist;
|
c@21
|
113 done cqblocks [1..octaves]);
|
c@14
|
114
|
c@17
|
115 assembleBlock bits =
|
c@19
|
116 (eprintln "assembleBlock: structure of bits is:";
|
c@19
|
117 eprintln (map length bits);
|
c@19
|
118
|
c@19
|
119 rows = octaves * kdata.binsPerOctave;
|
c@19
|
120 columns = (pow 2 (octaves - 1)) * kdata.atomsPerFrame;
|
c@19
|
121
|
c@18
|
122 cm.generate do row col:
|
c@19
|
123
|
c@19
|
124 // bits structure: [1,2,4,8,...]
|
c@19
|
125
|
c@19
|
126 // each elt of bits is a list of the chunks that should
|
c@19
|
127 // make up this block in that octave (lowest octave first)
|
c@19
|
128
|
c@19
|
129 // each chunk has atomsPerFrame * binsPerOctave elts in it
|
c@19
|
130
|
c@19
|
131 // row is disposed with 0 at the top, highest octave (in
|
c@19
|
132 // both pitch and index into bits structure)
|
c@19
|
133
|
c@18
|
134 oct = int (row / binsPerOctave);
|
c@19
|
135 binNo = row % kdata.binsPerOctave;
|
c@21
|
136
|
c@19
|
137 chunks = pow 2 oct;
|
c@21
|
138 colsPerAtom = int (columns / (chunks * kdata.atomsPerFrame));
|
c@21
|
139 atomNo = int (col / colsPerAtom);
|
c@21
|
140 atomOffset = col % colsPerAtom;
|
c@18
|
141
|
c@40
|
142 if atomOffset == 0 and atomNo < length bits[oct] then
|
c@21
|
143 bits[oct][atomNo][binNo];
|
c@20
|
144 else
|
c@20
|
145 cplx.zero
|
c@20
|
146 fi;
|
c@19
|
147
|
c@19
|
148 done { rows, columns };
|
c@19
|
149 );
|
c@15
|
150
|
c@17
|
151 processOctaveLists octs =
|
c@17
|
152 case octs[0] of
|
c@17
|
153 block::rest:
|
c@19
|
154 (toAssemble = array
|
c@19
|
155 (map do oct:
|
c@21
|
156 n = kdata.atomsPerFrame * pow 2 oct;
|
c@17
|
157 if not empty? octs[oct] then
|
c@19
|
158 forBlock = array (take n octs[oct]);
|
c@17
|
159 octs[oct] := drop n octs[oct];
|
c@17
|
160 forBlock
|
c@17
|
161 else
|
c@19
|
162 array []
|
c@17
|
163 fi
|
c@19
|
164 done (keys octs));
|
c@17
|
165 assembleBlock toAssemble :. \(processOctaveLists octs));
|
c@17
|
166 _: []
|
c@15
|
167 esac;
|
c@15
|
168
|
c@19
|
169 eprintln "cqblocks has \(length cqblocks) entries";
|
c@15
|
170
|
c@17
|
171 octaveLists = [:];
|
c@19
|
172
|
c@19
|
173 cqblocks = array cqblocks;
|
c@17
|
174 for [1..octaves] do oct:
|
c@17
|
175 octaveLists[octaves - oct] := cqblocks[oct-1];
|
c@17
|
176 done;
|
c@17
|
177 /*
|
c@17
|
178 \() (map2 do octlist octave:
|
c@17
|
179 println "oct \(octaves) - \(octave) = \(octaves - octave)";
|
c@17
|
180 octaveLists[octaves - octave] := octlist
|
c@17
|
181 done cqblocks [1..octaves]);
|
c@17
|
182 */
|
c@19
|
183 eprintln "octaveLists keys are: \(keys octaveLists)";
|
c@15
|
184
|
c@40
|
185 {
|
c@40
|
186 kernel = kdata with {
|
c@40
|
187 binFrequencies = array (concat
|
c@40
|
188 (map do octave:
|
c@40
|
189 map do freq:
|
c@40
|
190 freq / (pow 2 octave);
|
c@40
|
191 done (reverse (list kdata.binFrequencies))
|
c@40
|
192 done [0..octaves-1]))
|
c@40
|
193 },
|
c@40
|
194 output = processOctaveLists octaveLists
|
c@40
|
195 }
|
c@10
|
196 );
|
c@10
|
197
|
c@37
|
198 { cqt }
|
c@10
|
199
|