annotate yeti/cqt.yeti @ 37:7f0133234f00

Pull out test program
author Chris Cannam <c.cannam@qmul.ac.uk>
date Thu, 07 Nov 2013 11:55:10 +0000
parents 5ca24ff67566
children 031386846e3c
rev   line source
c@10 1
c@37 2 module cqt;
c@10 3
c@10 4 cqtkernel = load cqtkernel;
c@10 5 resample = load may.stream.resample;
c@10 6 manipulate = load may.stream.manipulate;
c@10 7 cm = load may.matrix.complex;
c@10 8 framer = load may.stream.framer;
c@10 9 cplx = load may.complex;
c@10 10 fft = load may.transform.fft;
c@10 11 vec = load may.vector;
c@10 12
c@10 13 { pow, round, floor, ceil, log2, nextPowerOfTwo } = load may.mathmisc;
c@10 14
c@37 15 cqt { maxFreq, minFreq, binsPerOctave } str =
c@10 16 (sampleRate = str.sampleRate;
c@10 17 octaves = ceil (log2 (maxFreq / minFreq));
c@10 18 actualMinFreq = (maxFreq / (pow 2 octaves)) * (pow 2 (1/binsPerOctave));
c@10 19
c@16 20 eprintln "sampleRate = \(sampleRate), maxFreq = \(maxFreq), minFreq = \(minFreq), actualMinFreq = \(actualMinFreq), octaves = \(octaves), binsPerOctave = \(binsPerOctave)";
c@10 21
c@10 22 kdata = cqtkernel.makeKernel { sampleRate, maxFreq, binsPerOctave };
c@10 23
c@16 24 eprintln "atomsPerFrame = \(kdata.atomsPerFrame)";
c@11 25
c@10 26 streams = manipulate.duplicated octaves str;
c@10 27
c@10 28 //!!! can't be right!
c@10 29 kernel = cm.transposed (cm.conjugateTransposed kdata.kernel);
c@10 30
c@16 31 eprintln "have kernel";
c@10 32
c@10 33 fftFunc = fft.forward kdata.fftSize;
c@10 34
c@10 35 cqblocks =
c@10 36 map do octave:
c@10 37 frames = framer.monoFrames //!!! mono for now
c@10 38 { framesize = kdata.fftSize, hop = kdata.fftHop }
c@10 39 (resample.decimated (pow 2 octave) streams[octave]);
c@10 40 map do frame:
c@10 41 freq = fftFunc (cplx.complexArray frame (vec.zeros kdata.fftSize));
c@10 42 cm.product kernel (cm.newComplexColumnVector freq);
c@10 43 done frames;
c@10 44 done [0..octaves-1];
c@10 45
c@13 46 // The cqblocks list is a list<list<matrix>>. Each top-level list
c@11 47 // corresponds to an octave, from highest to lowest, each having
c@11 48 // twice as many elements in its list as the next octave. The
c@11 49 // sub-lists are sampled in time with an effective spacing of
c@11 50 // fftSize * 2^(octave-1) audio frames, and the matrices are row
c@11 51 // vectors with atomsPerFrame * binsPerOctave complex elements.
c@13 52 //
c@13 53 // ***
c@13 54 //
c@13 55 // In a typical constant-Q structure, each (2^(octaves-1) *
c@13 56 // fftHop) input frames gives us an output structure conceptually
c@13 57 // like this:
c@10 58 //
c@10 59 // [][][][][][][][] <- fftHop frames per highest-octave output value
c@10 60 // [][][][][][][][] layered as many times as binsPerOctave (here 2)
c@10 61 // [--][--][--][--] <- fftHop*2 frames for the next lower octave
c@10 62 // [--][--][--][--] etc
c@10 63 // [------][------]
c@10 64 // [------][------]
c@10 65 // [--------------]
c@10 66 // [--------------]
c@10 67 //
c@13 68 // ***
c@13 69 //
c@13 70 // But the kernel we're using here has more than one temporally
c@13 71 // spaced atom; each individual cell is a row vector with
c@13 72 // atomsPerFrame * binsPerOctave elements, but that actually
c@13 73 // represents a rectangular matrix of result cells with width
c@13 74 // atomsPerFrame and height binsPerOctave. The columns of this
c@13 75 // matrix (the atoms) then need to be spaced by 2^(octave-1)
c@13 76 // relative to those from the highest octave.
c@10 77
c@15 78 // Reshape each row vector into the appropriate rectangular matrix
c@21 79 // and split into single-atom columns
c@19 80
c@21 81 emptyHops = kdata.firstCentre / kdata.atomSpacing;
c@21 82 maxDrop = emptyHops * (pow 2 (octaves-1)) - emptyHops;
c@21 83 eprintln "maxDrop = \(maxDrop)";
c@21 84
c@21 85 cqblocks = map do octlist:
c@21 86 concat
c@21 87 (map do rv:
c@21 88 cm.asColumns
c@21 89 (cm.generate do row col:
c@21 90 cm.at rv ((row * kdata.atomsPerFrame) + col) 0
c@21 91 done {
c@21 92 rows = kdata.binsPerOctave,
c@21 93 columns = kdata.atomsPerFrame
c@21 94 })
c@21 95 done octlist)
c@21 96 done cqblocks;
c@21 97
c@21 98 cqblocks = array (map2 do octlist octave:
c@21 99 d = emptyHops * (pow 2 (octaves-octave)) - emptyHops;
c@22 100
c@22 101 d = 0; //!!!
c@22 102
c@21 103 eprintln "dropping \(d)";
c@21 104 drop d octlist;
c@21 105 done cqblocks [1..octaves]);
c@14 106
c@17 107 assembleBlock bits =
c@19 108 (eprintln "assembleBlock: structure of bits is:";
c@19 109 eprintln (map length bits);
c@19 110
c@19 111 rows = octaves * kdata.binsPerOctave;
c@19 112 columns = (pow 2 (octaves - 1)) * kdata.atomsPerFrame;
c@19 113
c@18 114 cm.generate do row col:
c@19 115
c@19 116 // bits structure: [1,2,4,8,...]
c@19 117
c@19 118 // each elt of bits is a list of the chunks that should
c@19 119 // make up this block in that octave (lowest octave first)
c@19 120
c@19 121 // each chunk has atomsPerFrame * binsPerOctave elts in it
c@19 122
c@19 123 // row is disposed with 0 at the top, highest octave (in
c@19 124 // both pitch and index into bits structure)
c@19 125
c@18 126 oct = int (row / binsPerOctave);
c@19 127 binNo = row % kdata.binsPerOctave;
c@21 128
c@19 129 chunks = pow 2 oct;
c@21 130 colsPerAtom = int (columns / (chunks * kdata.atomsPerFrame));
c@21 131 atomNo = int (col / colsPerAtom);
c@21 132 atomOffset = col % colsPerAtom;
c@18 133
c@22 134 if /*!!! atomOffset == 0 and */ atomNo < length bits[oct] then
c@21 135 bits[oct][atomNo][binNo];
c@20 136 else
c@20 137 cplx.zero
c@20 138 fi;
c@19 139
c@19 140 done { rows, columns };
c@19 141 );
c@15 142
c@17 143 processOctaveLists octs =
c@17 144 case octs[0] of
c@17 145 block::rest:
c@19 146 (toAssemble = array
c@19 147 (map do oct:
c@21 148 n = kdata.atomsPerFrame * pow 2 oct;
c@17 149 if not empty? octs[oct] then
c@19 150 forBlock = array (take n octs[oct]);
c@17 151 octs[oct] := drop n octs[oct];
c@17 152 forBlock
c@17 153 else
c@19 154 array []
c@17 155 fi
c@19 156 done (keys octs));
c@17 157 assembleBlock toAssemble :. \(processOctaveLists octs));
c@17 158 _: []
c@15 159 esac;
c@15 160
c@19 161 eprintln "cqblocks has \(length cqblocks) entries";
c@15 162
c@17 163 octaveLists = [:];
c@19 164
c@19 165 cqblocks = array cqblocks;
c@17 166 for [1..octaves] do oct:
c@17 167 octaveLists[octaves - oct] := cqblocks[oct-1];
c@17 168 done;
c@17 169 /*
c@17 170 \() (map2 do octlist octave:
c@17 171 println "oct \(octaves) - \(octave) = \(octaves - octave)";
c@17 172 octaveLists[octaves - octave] := octlist
c@17 173 done cqblocks [1..octaves]);
c@17 174 */
c@19 175 eprintln "octaveLists keys are: \(keys octaveLists)";
c@17 176
c@17 177 processOctaveLists octaveLists;
c@15 178
c@10 179 );
c@10 180
c@37 181 { cqt }
c@10 182