Mercurial > hg > camir-aes2014
annotate toolboxes/FullBNT-1.0.7/KPMstats/partial_corr_coef.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
rev | line source |
---|---|
wolffd@0 | 1 function [r, c] = partial_corr_coef(S, i, j, Y) |
wolffd@0 | 2 % PARTIAL_CORR_COEF Compute a partial correlation coefficient |
wolffd@0 | 3 % [r, c] = partial_corr_coef(S, i, j, Y) |
wolffd@0 | 4 % |
wolffd@0 | 5 % S is the covariance (or correlation) matrix for X, Y, Z |
wolffd@0 | 6 % where X=[i j], Y is conditioned on, and Z is marginalized out. |
wolffd@0 | 7 % Let S2 = Cov[X | Y] be the partial covariance matrix. |
wolffd@0 | 8 % Then c = S2(i,j) and r = c / sqrt( S2(i,i) * S2(j,j) ) |
wolffd@0 | 9 % |
wolffd@0 | 10 |
wolffd@0 | 11 % Example: Anderson (1984) p129 |
wolffd@0 | 12 % S = [1.0 0.8 -0.4; |
wolffd@0 | 13 % 0.8 1.0 -0.56; |
wolffd@0 | 14 % -0.4 -0.56 1.0]; |
wolffd@0 | 15 % r(1,3 | 2) = 0.0966 |
wolffd@0 | 16 % |
wolffd@0 | 17 % Example: Van de Geer (1971) p111 |
wolffd@0 | 18 %S = [1 0.453 0.322; |
wolffd@0 | 19 % 0.453 1.0 0.596; |
wolffd@0 | 20 % 0.322 0.596 1]; |
wolffd@0 | 21 % r(2,3 | 1) = 0.533 |
wolffd@0 | 22 |
wolffd@0 | 23 X = [i j]; |
wolffd@0 | 24 i2 = 1; % find_equiv_posns(i, X); |
wolffd@0 | 25 j2 = 2; % find_equiv_posns(j, X); |
wolffd@0 | 26 S2 = S(X,X) - S(X,Y)*inv(S(Y,Y))*S(Y,X); |
wolffd@0 | 27 c = S2(i2,j2); |
wolffd@0 | 28 r = c / sqrt(S2(i2,i2) * S2(j2,j2)); |