comparison toolboxes/FullBNT-1.0.7/KPMstats/partial_corr_coef.m @ 0:e9a9cd732c1e tip

first hg version after svn
author wolffd
date Tue, 10 Feb 2015 15:05:51 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:e9a9cd732c1e
1 function [r, c] = partial_corr_coef(S, i, j, Y)
2 % PARTIAL_CORR_COEF Compute a partial correlation coefficient
3 % [r, c] = partial_corr_coef(S, i, j, Y)
4 %
5 % S is the covariance (or correlation) matrix for X, Y, Z
6 % where X=[i j], Y is conditioned on, and Z is marginalized out.
7 % Let S2 = Cov[X | Y] be the partial covariance matrix.
8 % Then c = S2(i,j) and r = c / sqrt( S2(i,i) * S2(j,j) )
9 %
10
11 % Example: Anderson (1984) p129
12 % S = [1.0 0.8 -0.4;
13 % 0.8 1.0 -0.56;
14 % -0.4 -0.56 1.0];
15 % r(1,3 | 2) = 0.0966
16 %
17 % Example: Van de Geer (1971) p111
18 %S = [1 0.453 0.322;
19 % 0.453 1.0 0.596;
20 % 0.322 0.596 1];
21 % r(2,3 | 1) = 0.533
22
23 X = [i j];
24 i2 = 1; % find_equiv_posns(i, X);
25 j2 = 2; % find_equiv_posns(j, X);
26 S2 = S(X,X) - S(X,Y)*inv(S(Y,Y))*S(Y,X);
27 c = S2(i2,j2);
28 r = c / sqrt(S2(i2,i2) * S2(j2,j2));