Mercurial > hg > camir-aes2014
view toolboxes/FullBNT-1.0.7/KPMstats/partial_corr_coef.m @ 0:e9a9cd732c1e tip
first hg version after svn
author | wolffd |
---|---|
date | Tue, 10 Feb 2015 15:05:51 +0000 |
parents | |
children |
line wrap: on
line source
function [r, c] = partial_corr_coef(S, i, j, Y) % PARTIAL_CORR_COEF Compute a partial correlation coefficient % [r, c] = partial_corr_coef(S, i, j, Y) % % S is the covariance (or correlation) matrix for X, Y, Z % where X=[i j], Y is conditioned on, and Z is marginalized out. % Let S2 = Cov[X | Y] be the partial covariance matrix. % Then c = S2(i,j) and r = c / sqrt( S2(i,i) * S2(j,j) ) % % Example: Anderson (1984) p129 % S = [1.0 0.8 -0.4; % 0.8 1.0 -0.56; % -0.4 -0.56 1.0]; % r(1,3 | 2) = 0.0966 % % Example: Van de Geer (1971) p111 %S = [1 0.453 0.322; % 0.453 1.0 0.596; % 0.322 0.596 1]; % r(2,3 | 1) = 0.533 X = [i j]; i2 = 1; % find_equiv_posns(i, X); j2 = 2; % find_equiv_posns(j, X); S2 = S(X,X) - S(X,Y)*inv(S(Y,Y))*S(Y,X); c = S2(i2,j2); r = c / sqrt(S2(i2,i2) * S2(j2,j2));